Skip to main content

Insights into the Antigen Sampling Component of the Dendritic Cell Algorithm

  • Conference paper
Artificial Immune Systems (ICARIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6209))

Included in the following conference series:

Abstract

The aim of this paper is to investigate the antigen sampling component of the deterministic version of the dendritic cell algorithm (dDCA). To achieve this, a model is presented, and used to produce synthetic data for two temporal correlation problems. The model itself is designed to simulate a system stochastically switching between a normal and an anomalous state over time. By investigating five parameter values for the dDCA’s maximum migration threshold, and benchmarking alongside a minimised version of the dDCA, the effect of sampling using a multi-agent population is explored. Potential sources of error in the dDCA outputs are identified, and related to the duration of the anomalous state in the input data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greensmith, J.: The Dendritic Cell Algorithm, PhD Thesis, The University of Nottingham (2007)

    Google Scholar 

  2. Aickelin, U., Bentley, P., Cayzer, S., et al.: Danger Theory: The Link between AIS and IDS? In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Manzoor, S., Shafiq, M.Z., Tabish, S.M., et al.: A Sense of Danger for Windows Processes. In: Andrews, P.S., Timmis, J., Owens, N.D.L., Aickelin, U., Hart, E., Hone, A., Tyrrell, A. (eds.) ICARIS 2009. LNCS, vol. 5666, pp. 220–233. Springer, Heidelberg (2009)

    Google Scholar 

  4. Oates, R., Kendall, G., Garibaldi, J.: Frequency Analysis for Dendritic Cell Population Tuning: Decimating the Dendritic Cell. Evolutionary Intelligence 1, 145–157 (2008)

    Article  Google Scholar 

  5. Stibor, T., Oates, R., Kendall, G., et al.: Geometrical insights into the dendritic cell algorithm. In: Proceedings of the 11th Annual conference on Genetic and Evolutionary Computation, pp. 1275–1282 (2009)

    Google Scholar 

  6. Greensmith, J., Aickelin, U.: The Deterministic Dendritic Cell Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Gu, F., Greensmith, J., Aickelin, U.: Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 142–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Gu, F., Greensmith, J., Aickelin, U.: Integrating real-time analysis with the dendritic cell algorithm through segmentation. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 1203–1210 (2009)

    Google Scholar 

  9. Mokhtar, M., Timmis, J., Tyrrell, A.: A modified dendritic cell algorithm for on-line error detection in robotic systems. In: Proceedings of the Eleventh conference on Congress on Evolutionary Computation, pp. 2055–2062 (2009)

    Google Scholar 

  10. Greensmith, J., Aickelin, U., Cayzer, S.: Detecting Danger: The Dendritic Cell Algorithm. In: Robust Intelligent Systems, pp. 89–112 (2009)

    Google Scholar 

  11. Oates, R., Kendall, G., Garibaldi, J.: The Limitations of Frequency Analysis for Dendritic Cell Population Modelling. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 328–339. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Stroock, D.W.: An Introduction to Markov Processes, 1st edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Musselle, C.J. (2010). Insights into the Antigen Sampling Component of the Dendritic Cell Algorithm. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds) Artificial Immune Systems. ICARIS 2010. Lecture Notes in Computer Science, vol 6209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14547-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14547-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14546-9

  • Online ISBN: 978-3-642-14547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics