Skip to main content

A Hybrid Graph Representation for Recursive Backtracking Algorithms

  • Conference paper
Frontiers in Algorithmics (FAW 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6213))

Included in the following conference series:

Abstract

Many exact algorithms for \(\mathcal{NP}\)-hard graph problems adopt the old Davis-Putman branch-and-reduce paradigm. The performance of these algorithms often suffers from the increasing number of graph modifications, such as deletions, that reduce the problem instance and have to be “taken back” frequently during the search process. The use of efficient data structures is necessary for fast graph modification modules as well as fast take-back procedures. In this paper, we investigate practical implementation-based aspects of exact algorithms by providing a hybrid graph representation that addresses the take-back challenge and combines the advantage of \({\mathcal{O}}(1)\) adjacency-queries in adjacency-matrices with the advantage of efficient neighborhood traversal in adjacency-lists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further improvements. Journal of Algorithms 41, 313–324 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Chen, J., Liu, L., Jia, W.: Improvement on vertex cover for low-degree graphs. Networks 35(4), 253–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Engebretsen, L., Holmerin, J.: Clique is hard to approximate within n 1 − o(1). In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 2–12. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination - a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n) independent set algorithm. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm (SODA), New York, USA, pp. 18–25 (2006)

    Google Scholar 

  7. Fomin, F.V., Kratsch, D., Woeginger, L., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4(2), 209–214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hastad, J.: Clique is hard to approximate within n (1 − ε). Acta Mathematica, 627–636 (1996)

    Google Scholar 

  10. Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set. Technical report, Zentrum für Angewandte Informatik Köln, Lehrstuhl Speckenmeyer (2004)

    Google Scholar 

  11. van Rooij, J.M., Bodlaender, H.L.: Exact algorithms for edge domination. Technical Report UU-CS-2007-051, Department of Information and Computing Sciences, Utrecht University (2007)

    Google Scholar 

  12. van Rooij, J.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating sets. Technical Report UU-CS-2008-043, Department of Information and Computing Sciences, Utrecht University (2008)

    Google Scholar 

  13. van Rooij, J.M., Bodlaender, H.L.: Design by measure and conquer, a faster exact algorithm for dominating set. In: Albers, S., Weil, P. (eds.) STACS. LIPIcs, vol. 1, pp. 657–668. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abu-Khzam, F.N., Langston, M.A., Mouawad, A.E., Nolan, C.P. (2010). A Hybrid Graph Representation for Recursive Backtracking Algorithms. In: Lee, DT., Chen, D.Z., Ying, S. (eds) Frontiers in Algorithmics. FAW 2010. Lecture Notes in Computer Science, vol 6213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14553-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14553-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14552-0

  • Online ISBN: 978-3-642-14553-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics