Skip to main content

Minimum Common String Partition Revisited

  • Conference paper
Frontiers in Algorithmics (FAW 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6213))

Included in the following conference series:

  • 785 Accesses

Abstract

Minimum Common String Partition (MCSP) has drawn much attention due to its application in genome rearrangement. In this paper, we investigate three variants of MCSP: MCSP c, which requires that there are at most c symbols in the alphabet; d-MCSP, which requires the occurrence of each symbol to be bounded by d; and x-balance MCSP, which requires the length of blocks not being x away from the average length. We show that MCSP c is NP-hard when cā€‰ā‰„ā€‰2. As for d-MCSP, we present an FPT algorithm which runs in O *((d!)k) time. As it is still unknown whether an FPT algorithm only parameterized on k exists for the general case of MCSP, we also devise an FPT algorithm for the special case x-balance MCSP parameterized on both k and x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing the assignment of orthologous genes via genome rearrangement. In: Proc. of the 3rd Asia-Pacific Bioinformatics Conf. (APBC 2005), pp. 363ā€“378 (2005)

    Google Scholar 

  2. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions. SIAM Journal on Discrete Mathematics 14(2), 193ā€“206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common string partition problem. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 84ā€“95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Damaschke, P.: Minimum Common String Partition Parameterized. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 87ā€“98. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  8. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning problem: Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 473ā€“484. Springer, Heidelberg (2004); also in: The Electronic Journal of Combinatorics 12 (2005), paper R50

    Google Scholar 

  9. Kaplan, H., Shafrir, N.: The greedy algorithm for edit distance with moves. Inf. Process. Lett. 97(1), 23ā€“27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kolman, P., Walen, T.: Reversal Distance for Strings with Duplicates: Linear Time Approximation Using Hitting Set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279ā€“289. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kolman, P.: Approximating reversal distance for strings with bounded number of duplicates. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 580ā€“590. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Kolman, P., Walen, T.: Approximating reversal distance for strings with bounded number of duplicates. Discrete Applied Mathematics 155(3), 327ā€“336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, H., Zhu, B., Zhu, D., Zhu, H. (2010). Minimum Common String Partition Revisited. In: Lee, DT., Chen, D.Z., Ying, S. (eds) Frontiers in Algorithmics. FAW 2010. Lecture Notes in Computer Science, vol 6213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14553-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14553-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14552-0

  • Online ISBN: 978-3-642-14553-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics