Skip to main content

Link-Based Text Classification Using Bayesian Networks

  • Conference paper
Focused Retrieval and Evaluation (INEX 2009)

Abstract

In this paper we propose a new methodology for link-based document classification based on probabilistic classifiers and Bayesian networks. We also report the results obtained of its application to the XML Document Mining Track of INEX’09.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buntine, W.L.: A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering 8, 195–210 (1996)

    Article  Google Scholar 

  2. Cano, A., Moral, S., Salmerón, A.: Algorithms for approximate probability propagation in Bayesian networks. In: Advances in Bayesian Networks, Studies in Fuzziness and Soft Computing, vol. 146, pp. 77–99. Springer, Heidelberg (2004)

    Google Scholar 

  3. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: OR gate Bayesian networks for text classification: a discriminative alternative approach to multinomial naive Bayes. In: XIV Congreso Español sobre Tecnologías y Lógica Fuzzy, pp. 385–390 (2008)

    Google Scholar 

  4. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Probabilistic methods for structured document classification at INEX’07. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 195–206. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Probabilistic methods for link-based classification at INEX’08. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 453–459. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Denoyer, L., Gallinari, P.: Overview of the INEX 2008 XML Mining Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 401–411. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Elvira Consortium: Elvira: An environment for probabilistic graphical models. In: First European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)

    Google Scholar 

  8. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

    MATH  Google Scholar 

  9. McCallum, A., Nigam, K.: A Comparison of event models for Naive Bayes text classification. In: AAAI/ICML Workshop on Learning for Text Categorization, pp. 137–142. AAAI Press, Menlo Park (1998)

    Google Scholar 

  10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  11. Platt, J.: Probabilistic outputs for Support Vector Machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Sebastiani, F.: Machine Learning in automated text categorization. ACM Computing Surveys 34, 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  13. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  14. Yang, Y.: A study of thresholding strategies for text categorization. In: 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 137–145 (2001)

    Google Scholar 

  15. Yang, Y., Slattery, S.: A study of approaches to hypertext categorization. Journal of Intelligent Information Systems 18, 219–241 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Masegosa, A.R., Romero, A.E. (2010). Link-Based Text Classification Using Bayesian Networks. In: Geva, S., Kamps, J., Trotman, A. (eds) Focused Retrieval and Evaluation. INEX 2009. Lecture Notes in Computer Science, vol 6203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14556-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14556-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14555-1

  • Online ISBN: 978-3-642-14556-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics