Skip to main content

An Information Theoretic Approach to Reverse Engineering of Regulatory Gene Networks from Time–Course Data

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2009)

Abstract

One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory. In particular, we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements are concerning part of S. cerevisiae cell cycle and E. coli SOS pathways. Our results are compared with the ones of two previously published algorithms: Dynamic Bayesian Networks and systems of ODEs, showing that TimeDelay-ARACNE has good accuracy, recall and F-score for the network reconstruction task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gardner, T.S., Faith, J.J.: Reverse-engineering transcription control networks. Physics of Life Reviews 2(1), 65–88 (2005)

    Article  Google Scholar 

  2. Hasty, J., McMillen, D., Isaacs, F., Collins, J.: Computational studies of gene regulatory networks: in numeromolecular biology. Nature Review Genetics 2, 268–279 (2001)

    Article  Google Scholar 

  3. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)

    Google Scholar 

  4. Kim, S., Kim, J., Cho, K.: Inferring gene regulatory networks from temporal expression profiles under time-delay and noise. Computational Biology and Chemistry 31, 239–245 (2007)

    Article  MATH  Google Scholar 

  5. Neapolitan, R.: Learning bayesian networks. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  7. Zou, M., Conzen, S.D.: A new dnamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)

    Article  Google Scholar 

  8. Schäfer, J., Strimmer, K.: An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6), 754–764 (2005)

    Article  Google Scholar 

  9. Stark, E., Drori, R., Abeles, M.: Partial Cross-Correlation analysis resolves ambiguity in the encoding of multiple movement features. J. Neurophysiol. 95(3), 1966–1975 (2006)

    Article  Google Scholar 

  10. Butte, A.J., Kohane, I.S.: Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. In: Pacific Symposium on Biocomputing, vol. 5, pp. 415–426 (2000)

    Google Scholar 

  11. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl. I), S7 (2006)

    Article  Google Scholar 

  12. Faith, J.J., Hayete, B., Thaden, T.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J.J., Gardner, T.S.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology 5(1), e8+ (2007)

    Article  Google Scholar 

  13. Meyer, P.E., Kontos, K., Lafitte, F., Bontempi, G.: Information theoretic inference of large transcriptional regulatory network. EURASIP Journal on Bioinformatics and Systems Biology 2007 (2007)

    Google Scholar 

  14. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 19, i255–i263 (2002)

    Google Scholar 

  15. Schliep, A., Schönhuth, A., Steinhoff, C.: Using hidden markov models to analyze gene expression time course data. Bioinformatics 18(2), 261–274 (2003)

    Google Scholar 

  16. Cui, Q., Liu, B., Jiang, T., Ma, S.: Characterizing the dynamic connectivity between genes by variable parameter regression and kalman filtering based on temporal gene expression data. Bioinformatics 21(8), 1538–1541 (2005)

    Article  Google Scholar 

  17. Bansal, M., Gatta, G., di Bernardo, D.: Inference of gene regulatory networks and compound mode of action from time course gene expression. Bioinformatics 22(7), 815–822 (2006)

    Article  Google Scholar 

  18. Chuang, C., Jen, C., Chen, C., Shieh, G.: A pattern recognition approach to infer time-lagged genetic interactions. Bioinformatics 24(9), 1183–1190 (2008)

    Article  Google Scholar 

  19. Opgen-Rhein, R., Strimmer, K.: Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8, S3 (2007)

    Article  Google Scholar 

  20. Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., Zhang, Q., Wang, L., Du, L., Li, J., et al.: Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling. BMC bioinformatics 7(1), 26 (2006)

    Article  Google Scholar 

  21. Zhao, W., Serpedin, E., Dougherty, E.: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17), 21–29 (2006)

    Article  Google Scholar 

  22. Waibel, A.: Modular construction of time-delay neural networks for speech recognition. Neural Computation 1(1), 39–46 (1989)

    Article  Google Scholar 

  23. Luktepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, Heidelberg (2005)

    Google Scholar 

  24. Ramoni, M., Sebastiani, P., Kohane, I.: Cluster analysis of gene expression dynamics. Proceedings of the National Academy of Science 99(14), 9121–9126 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Holter, N., Maritan, A., Cieplak, M., Fedoroff, N., Banavar, J.: Dynamic modeling of gene expression data. Proceedings of the National Academy of Science 98(4), 1693–1698 (2000)

    Article  Google Scholar 

  26. Gat-Viks, I., Tanay, A., Shamir, R.: Modeling and analysis of heterogeneous regulation in biological network. In: Eskin, E., Workman, C. (eds.) RECOMB-WS 2004. LNCS (LNBI), vol. 3318, pp. 98–113. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botsein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)

    Google Scholar 

  28. Kanehisa, M., Goto, S.: Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acid Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  29. Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. U.S.A. 99(16), 10555–10560 (2002)

    Article  Google Scholar 

  30. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla Favera, R., Califano, A.: Reverse engineering of regulatory networks in human b cells. Nature Genetics 37(4), 382–390 (2005)

    Article  Google Scholar 

  31. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, Hoboken (1991)

    Book  MATH  Google Scholar 

  32. Havard, R., Held, L.: Gaussian Markov random fields: theory and applications. CRC Press, Boca Raton (2005)

    Google Scholar 

  33. Chen, X., Fan, Y.: Estimation of copula-based semiparametric time series models. Journal of Econometrics (January 2006)

    Google Scholar 

  34. Nelsen, R.B.: An Introduction to Copulas. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  35. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, A.J.: Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594–3603 (2004)

    Article  Google Scholar 

  36. Bensal, M., Della Gatta, G., Di Bernardo, D.: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7), 815–822 (2006)

    Article  Google Scholar 

  37. Saito, S., Aburatani, S., Horimoto, K.: Network evaluation from the consistency of the graph structure with the measured data. BMC Systems Biology 2(84), 1–14 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zoppoli, P., Morganella, S., Ceccarelli, M. (2010). An Information Theoretic Approach to Reverse Engineering of Regulatory Gene Networks from Time–Course Data. In: Masulli, F., Peterson, L.E., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2009. Lecture Notes in Computer Science(), vol 6160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14571-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14571-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14570-4

  • Online ISBN: 978-3-642-14571-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics