Skip to main content

On the Use of Temporal Formal Logic to Model Gene Regulatory Networks

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6160))

  • 1010 Accesses

Abstract

Modelling activities in molecular biology face the difficulty of prediction to link molecular knowledge with cell phenotypes. Even when the interaction graph between molecules is known, the deduction of the cellular dynamics from this graph remains a strong corner stone of the modelling activity, in particular one has to face the parameter identification problem. This article is devoted to convince the reader that computers can be used not only to simulate a model of the studied biological system but also to deduce the sets of parameter values that lead to a behaviour compatible with the biological knowledge (or hypotheses) about dynamics. This approach is based on formal logic. It is illustrated in the discrete modelling framework of genetic regulatory networks due to René Thomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmad, J., Bourdon, J., Eveillard, J., Fromentin, D., Roux, O., Sinoquet, C.: Temporal constraints of a gene regulatory network: refining a qualitative simulation. Biosystems 98(3), 149–159 (2009)

    Article  Google Scholar 

  2. Bernot, G., Comet, J.-P., Khalis, Z.: Gene regulatory networks with multiplexes. In: European Simulation and Modelling Conference Proceedings, France, October 27-29, pp. 423–432 (2008) ISBN 978-90-77381-44-1

    Google Scholar 

  3. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifications: A theory and a tool. Software Engineering Journal 6(6), 387–405 (1991)

    Article  Google Scholar 

  4. Cardelli, L., Caron, E., Gardner, P., Kahramanogulları, O., Phillips, A.: A process model of rho gtp-binding proteins. Theoretical Computer Science 410(33-34), 3166–3185 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Collado-Vides, J., Magasanik, B., Smith, T.: Integrative approaches to molecular biology. The MIT press, Cambridge (1996)

    Google Scholar 

  7. Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling biochemical pathways through enhanced Ï€-calculus. Theoretical Computer Science 325(1), 111–140 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Jong, H.: Qualitative modeling and simulation of bacterial regulatory networks. In: Heiner, M., Uhrmacher, A. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, p. 1. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Fanchon, E., Corblin, F., Trilling, L., Hermant, B., Gulino, D.: Modeling the molecular network controlling adhesion between human endothelial cells: Inference and simulation using constraint logic programming. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 104–118. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. GouzĂ©, J.-L.: Positive and negative circuits in dynamical systems. Journal of Biological Systems 6, 11–15 (1998)

    Article  MATH  Google Scholar 

  11. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. Journal of molecular biology 3, 318–356 (1961)

    Article  Google Scholar 

  12. Jard, C., JĂ©ron, T.: TGV: theory, principles and algorithms. a tool for the automatic synthesis of conformance test cases for non-deterministic reactive systems. Software Tools for Technology Transfert 7(4), 297–315 (2005)

    Article  Google Scholar 

  13. Khalis, Z., Bernot, G., Comet, J.-P.: Gene Regulatory Networks: Introduction of multiplexes into R. Thomas’ modelling. In: Proc. of the Nice Spring school on Modelling and simulation of biological processes in the context of genomics, EDP Science, pp. 139–151 (2009) ISBN : 978-2-7598-0437-5

    Google Scholar 

  14. Khalis, Z., Comet, J.-P., Richard, A., Bernot, G.: The smbionet method for discovering models of gene regulatory networks. Genes, Genomes and Genomics (2009)

    Google Scholar 

  15. KĂ¼gler, P., Gaubitzer, E., MĂ¼ller, S.: Parameter identification for chemical reaction systems using sparsity enforcing regularization: A case study for the chlorite-iodide reaction. Journal of Physical Chemistry A 113(12), 2775–2785 (2009)

    Article  Google Scholar 

  16. Little, J.W.: Threshold effects in gene regulation: When some is not enough. PNAS 102(15), 5310–5311 (2005)

    Article  Google Scholar 

  17. Mateus, D., Gallois, J.-P., Comet, J.-P., Le Gall, P.: Symbolic modeling of genetic regulatory networks. Journal of Bioinformatics and Computational Biology 5(2B), 627–640 (2007)

    Article  Google Scholar 

  18. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: A reduction of logical regulatory graphs preserving essential dynamical properties. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS (LNBI), vol. 5688, pp. 266–280. Springer, Heidelberg (2009)

    Google Scholar 

  19. Plahte, E., Mestl, T., Omholt, S.W.: Feedback loops, stability and multistationarity in dynamical systems. Journal Biological Systems 3, 409–413 (1995)

    Article  Google Scholar 

  20. Popper, K.R.: Conjectures and refutations: the growth of scientific knowledge. Routledge & Kegan Paul, London (1965)

    Google Scholar 

  21. Richard, A., Comet, J.-P.: Necessary conditions for multistationarity in discrete dynamical systems. Discrete Applied Mathematics 155(18), 2403–2413 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12), i169–i178 (2009)

    Article  Google Scholar 

  23. Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory networks. Theoretical Computer Science 391(3), 258–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Snoussi, E.H.: Necessary conditions for multistationarity and stable periodicity. Journal of Biological Systems 6, 3–9 (1998)

    Article  MATH  Google Scholar 

  25. Snoussi, E.H.: Qualitative dynamics of a piecewise-linear differential equations: a discrete mapping approach. Dynamics and stability of Systems 4, 189–207 (1989)

    MATH  MathSciNet  Google Scholar 

  26. Snoussi, E.H., Thomas, R.: Logical identification of all steady states: the concept of feedback loop caracteristic states. Bull. Math. Biol. 55(5), 973–991 (1993)

    MATH  Google Scholar 

  27. SoulĂ©, C.: Graphical requirements for multistationarity. ComPlexUs 1, 123–133 (2003)

    Article  Google Scholar 

  28. Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steady states and sustained oscillations. In: Series in Synergetics, vol. 9, pp. 180–193. Springer, Heidelberg (1981)

    Google Scholar 

  29. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernot, G., Comet, JP. (2010). On the Use of Temporal Formal Logic to Model Gene Regulatory Networks. In: Masulli, F., Peterson, L.E., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2009. Lecture Notes in Computer Science(), vol 6160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14571-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14571-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14570-4

  • Online ISBN: 978-3-642-14571-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics