Skip to main content

Zulu: An Interactive Learning Competition

  • Conference paper
Finite-State Methods and Natural Language Processing (FSMNLP 2009)

Abstract

Active language learning is an interesting task for which theoretical results are known and several applications exist. In order to better understand what the better strategies may be, a new competition called Zulu ( http://labh-curien.univ-st-etienne.fr/zulu/ ) is launched: participants are invited to learn deterministic finite automata from membership queries. The goal is to obtain the best classification rate from a fixed number of queries.

This work was partially supported by the IST Programme of the European Community, under the Pascal 2 Network of Excellence, Ist–2006-216886. The work started while the second author was at Saint-Etienne-University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Queries and concept learning. Machine Learning Journal 2, 319–342 (1987)

    Google Scholar 

  2. Angluin, D.: Queries revisited. Theoretical Computer Science 313(2), 175–194 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognition 38, 1332–1348 (2005)

    Article  Google Scholar 

  4. Angluin, D.: A note on the number of queries needed to identify regular languages. Information and Control 51, 76–87 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Angluin, D.: Negative results for equivalence queries. Machine Learning Journal 5, 121–150 (1990)

    Google Scholar 

  6. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Control 39, 337–350 (1987)

    Article  MathSciNet  Google Scholar 

  7. Balcázar, J.L., Diaz, J., Gavaldà, R., Watanabe, O.: An optimal parallel algorithm for learning Dfa. In: Proceedings of the 7th Colt, pp. 208–217. ACM Press, New York (1994)

    Google Scholar 

  8. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory. MIT press, Cambridge (1994)

    Google Scholar 

  9. Balcázar, J.L., Diaz, J., Gavaldà, R., Watanabe, O.: The query complexity of learning Dfa. New Generation Computing 12, 337–358 (1994)

    Article  MATH  Google Scholar 

  10. Bshouty, N.H., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Oracles and queries that are sufficient for exact learning. Journal of Computer and System Sciences 52, 421–433 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gavaldà, R.: On the power of equivalence queries. In: Proceedings of the 1st European Conference on Computational Learning Theory. The Institute of Mathematics and its Applications Conference Series, new series, vol. 53, pp. 193–203. Oxford University Press, Oxford (1993)

    Google Scholar 

  12. Castro, J., Guijarro, D.: PacS, simple-Pac and query learning. Information Processing Letters 73(1-2), 11–16 (2000)

    Article  MathSciNet  Google Scholar 

  13. de la Higuera, C., Janodet, J.C., Tantini, F.: Learning languages from bounded resources: the case of the DFA and the balls of strings. In: [33], pp. 43–56

    Google Scholar 

  14. de la Higuera, C.: Ten open problems in grammatical inference. In: [34], pp. 32–44

    Google Scholar 

  15. de la Higuera, C., Oncina, J.: Learning probabilistic finite automata. In: [35], 175–186

    Google Scholar 

  16. Guttman, O., Vishwanathan, S.V.N., Williamson, R.C.: Learnability of probabilistic automata via oracles. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 171–182. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity and equivalence queries. Siam Journal of Computing 25(6), 1268–1280 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vilar, J.M.: Query learning of subsequential transducers. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS (LNAI), vol. 1147, pp. 72–83. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  19. Saoudi, A., Yokomori, T.: Learning local and recognizable ω-languages and monadic logic programs. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 157–169. Springer, Heidelberg (1995)

    Google Scholar 

  20. Yokomori, T.: Learning two-tape automata from queries and counterexamples. Mathematical Systems Theory, 259–270 (1996)

    Google Scholar 

  21. Beccera-Bonache, L., Bibire, C., Dediu, A.H.: Learning Dfa from corrections. In: Fernau, H., ed.: Proceedings of the Workshop on Theoretical Aspects of Grammar Induction (Tagi). WSI-2005-14. Technical Report, University of Tübingen, pp.1–11 (2005)

    Google Scholar 

  22. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls of strings from edit corrections. Journal of Machine Learning Research 9, 1841–1870 (2008)

    Google Scholar 

  23. Kinber, E.B.: On learning regular expressions and patterns via membership and correction queries. In: [33], pp. 125–138

    Google Scholar 

  24. de la Higuera, C.: Data complexity issues in grammatical inference. In: Basu, M., Ho, T.K. (eds.) Data Complexity in Pattern Recognition, pp. 153–172. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Dean, T., Basye, K., Kaelbling, L., Kokkevis, E., Maron, O., Angluin, D., Engelson, S.: Inferring finite automata with stochastic output functions and an application to map learning. In: Swartout, W. (ed.) Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, CA, pp. 208–214. MIT Press, Cambridge (1992)

    Google Scholar 

  26. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Information and Computation 103, 299–347 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Carmel, D., Markovitch, S.: Model-based learning of interaction strategies in multi-agent systems. Journal of Experimental and Theoretical Artificial Intelligence 10(3), 309–332 (1998)

    Article  MATH  Google Scholar 

  28. Carmel, D., Markovitch, S.: Exploration strategies for model-based learning in multiagent systems. Autonomous Agents and Multi-agent Systems 2(2), 141–172 (1999)

    Article  Google Scholar 

  29. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node selecting tree transducer. Machine Learning Journal 66(1), 33–67 (2007)

    Article  Google Scholar 

  30. Bréhélin, L., Gascuel, O., Caraux, G.: Hidden Markov models with patterns to learn boolean vector sequences and application to the built-in self-test for integrated circuits. Pattern Analysis and Machine Intelligence 23(9), 997–1008 (2001)

    Article  Google Scholar 

  31. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Raffelt, H., Steffen, B.: Learnlib: A library for automata learning and experimentation. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 377–380. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Clark, A., Coste, F., Miclet, L. (eds.): ICGI 2008. LNCS (LNAI), vol. 5278. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  34. Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.): ICGI 2006. LNCS (LNAI), vol. 4201. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  35. Paliouras, G., Sakakibara, Y. (eds.): ICGI 2004. LNCS (LNAI), vol. 3264. Springer, Heidelberg (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Combe, D., de la Higuera, C., Janodet, JC. (2010). Zulu: An Interactive Learning Competition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds) Finite-State Methods and Natural Language Processing. FSMNLP 2009. Lecture Notes in Computer Science(), vol 6062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14684-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14684-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14683-1

  • Online ISBN: 978-3-642-14684-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics