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Abstract. This paper improves the price-performance ratio of ECM,
the elliptic-curve method of integer factorization. In particular, this pa-
per constructs “a = −1” twisted Edwards curves having Q-torsion group
Z/2× Z/4, Z/8, or Z/6 and having a known non-torsion point; demon-
strates that, compared to the curves used in previous ECM implementa-
tions, some of the new curves are more effective at finding small primes
despite being faster; and precomputes particularly effective curves for
several specific sizes of primes.
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1 Introduction

ECM, Lenstra’s elliptic-curve method of integer factorization [11], does not find
the secret prime factors of an RSA modulus as quickly as the number-field sieve
(NFS) does. However, ECM is an increasingly important tool inside NFS as a
method of finding many smaller primes.

This paper proposes a new two-part strategy to choose curves in ECM.
We have implemented the strategy as a patch to the state-of-the-art “EECM-
MPFQ” software, and demonstrated through extensive computer experiments
that the new strategy achieves better ECM price-performance ratios than any-
thing in the previous literature.

1.1. Background: Edwards curves in ECM. Edwards curves were first de-
scribed by Edwards in [7]. Bernstein and Lange [5] gave inversion-free formulas
for addition and doubling, showing that Edwards curves allow faster scalar mul-
tiplication than all other known curve shapes.
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Edwards curves save time in many applications in cryptography and number
theory — provided that the underlying curve is allowed to have a point of order
4. This 4-torsion requirement does not sound troublesome for ECM: the conven-
tional wisdom is that torsion points increase the chance of factorization. This
conventional wisdom is based on the heuristic that, for a curve having a torsion
group of size r, the group order modulo p has the same smoothness probability
as an integer divisible by r in the Hasse interval [p + 1 − 2

√
p, p + 1 + 2

√
p],

or equivalently an integer in [(p + 1 − 2
√
p)/r, (p + 1 + 2

√
p)/r], so increasing

r increases the smoothness chance. For more details on this heuristic and the
extent to which it holds, see [4, Section 9].

Bernstein, Birkner, Lange, and Peters demonstrated in [4] the speed of Ed-
wards curves inside ECM. The same paper introduced new small-coefficient high-
torsion positive-rank Edwards curves and reported measurements of the effective-
ness of two representative curves, i.e., the success chance of the curves at finding
primes of various sizes. One curve was the smallest-coefficient positive-rank Ed-
wards curve having torsion group isomorphic to Z/12; the other, Z/2 × Z/8.
Those curves turned out to be simultaneously faster and more effective than the
standard ECM choices described in detail in [17], namely Montgomery curves
(specifically Suyama curves) for stage 1 and Weierstrass curves for stage 2.

Twisted Edwards curves ax2 + y2 = 1 + dx2y2 were introduced in [3] as a
generalization of Edwards curves; they do not necessarily have a point of order
4. For a twisted Edwards curve with a = −1 and negative d the affine graph
looks like the following:

y

x

OO

//

To visualize the behavior at infinity we map a sphere to P2(R), rotate the
sphere to an angle that makes the relevant points at infinity visible at the same
time as (0, 0), and then project the front half of the sphere onto a circle. This
first picture shows that there is a single point at infinity and that the curve has
two different tangent lines at this point — but only the second picture shows the
true nature of things:
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Clearly our all-time-favorite starfish has gone on strike! This might explain
the results of [4] that curves over Q with a = −1 cannot have 12 or more rational
torsion points. Twisted Edwards curves with this parameter choice are refusing
to work for ECM!

The interest in curves with a = −1 comes from a curve-addition speedup
found by Hisil et al. in [9]. The addition formulas in [9] use 9M for a = 1 but
only 8M for a = −1, where M is the cost of a field multiplication; these formulas
hold the speed records for elliptic-curve addition, and one might even speculate
that they are optimal. The speed of doubling is unaffected by a = −1, and scalar
multiplication (using standard “window” methods) consists asymptotically of
100% doublings and 0% additions; however, additions are a significant fraction
of the cost of ECM stage 1, as illustrated by [4, Table 4.1], and are even more
important for ECM stage 2.

Unfortunately [4] showed that there are no twisted Edwards curves with
a = −1 and torsion group isomorphic to Z/10, or to Z/12, or to Z/2× Z/8, or
(even for general a) to Z/2× Z/6.

1.2. Contributions of this paper. It is natural to ask whether the speedup
in curve additions might be worth a sacrifice in size of the torsion subgroup. To
answer this question we first construct twisted Edwards curves with a = −1,
with positive rank, and with 8 or 6 Q-rational torsion points, and we then carry
out extensive computer experiments to analyze the effectiveness of the curves
at finding various sizes of primes. The constructions cover three torsion groups,
discussed in Sections 3, 4, and 5; for each torsion group we give a fast search
method for small-coefficient curves, an explicit infinite family of suitable curves,
and the best curves we found. Section 7 compares our curves to previous curves.

We were initially hoping, and were pleased to discover, that the speedup in
curve additions is worthwhile. Some of our a = −1 curves are the new price-
performance leaders for ECM: they cost fewer modular multiplications per prime
found than the curves used in [12], [13], [17], and [4]. The loss of effectiveness,
compared to previous curves with 12 or 16 torsion points, is outweighed by the
a = −1 gain in speed.

We were surprised to learn that some of our a = −1 curves are more effec-
tive than previous curves with 12 or 16 torsion points. These curves establish
new price-performance records for ECM in Montgomery form, even without the
Edwards speedups and without the a = −1 speedups. In twisted Edwards form,
with a = −1, these curves require fewer modular multiplications than previ-
ous curves and find more primes. Evidently the starfish has found a better job
working for smaller torsion!

1.3. Sizes of primes used in our paper. We do not claim to be able to
prove the effectiveness of our curves except through computation. There is a
common belief that one can estimate the effectiveness of a curve E by counting
the average number of powers of 2 and 3 in #E(Fp), as in [13], [17], [2], etc.; but
this belief cannot be correct, because it suggests that our curves have, at best,
the same effectiveness as previous Z/12 curves.
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To ensure the comprehensiveness of our computations we try a huge number
of curves on all b-bit primes, for various values of b. Of course, the cost of this
computation increases exponentially with b, and this paper reports results only
for 15 ≤ b ≤ 26, but these results are enough to demonstrate the impact of the
ECM variations considered in this paper.

We do not claim that ECM is useful for b = 15; presumably Pollard’s rho
method is better at that size. We also do not claim that our quantitative im-
provements are independent of b; it seems obvious that the gains decrease slowly
with b. We are continuing our computations and do not anticipate problems
pushing the computations past b = 30, i.e., solidly into the range where ECM is
used in cryptanalysis.

2 Summary of results on points of small order

Let k be a field of characteristic different from 2. A twisted Edwards curve over
k has the form E : ax2 + y2 = 1 + dx2y2, for some a, d ∈ k \ {0} with a 6= d. The
Edwards addition law is given by

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

See [6] for a simple definition of a group law on the completed twisted Ed-
wards curve

EE,a,d =
{

((X : Z), (Y : T )) ∈ P1 ×P1 : aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2
}
.

We abbreviate ((x1 : 1), (y1 : 1)) as (x1, y1).
We describe points of small order in the special case a = −1; see [4, Sections 2

and 3] for proofs in the general case. The picture in the previous section shows
the case of a = −1 and d < 0. The three points (0,−1) and ((1 : 0), (1 : ±

√
−d))

have order 2, so E(Q) contains a subgroup isomorphic to Z/2×Z/2 if and only
if −d is a square. Points of order 4 doubling to (0,−1) are (±

√
−1, 0) (which

do not exist over Q) and ((1 : ±
√
d), (1 : 0)) which exist if and only if d is a

square. Over Q, the values of d and −d cannot simultaneously be squares, so the
only way that Z/2 × Z/4 can be achieved is with points of order 4 doubling to
((1 : 0), (1 : ±

√
−d)). These are (± 4

√
−1/d,± 4

√
−1/d). Order-8 points doubling

to ((1 : ±
√
d), (1 : 0)) are of the form (x8,±1/(x8

√
d)), where d = 1/(x4

8 + 2x2
8).

Note that there is no other way a twisted Edwards curve with a = −1
can have torsion group isomorphic to Z/8: There is only one element of order
2 in Z/8, so −d must not be a square. The only points of order 4 are ((1 :
±
√
d), (1 : 0)), so d must be a square and any point of order 8 must double to

((1 : ±
√
d), (1 : 0)).

If y3 ∈ Q \ {−2,−1/2, 0, 1} and x3 ∈ Q satisfy the equation x2
3 = y2

3 + 2y3
then the twisted Edwards curve −x2 + y2 = 1 + dx2y2 over Q, where d =
−(2y3 + 1)/(x2

3y
2
3), has (±x3, y3) as points of order 3 and (±x3,−y3) as points

of order 6.
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3 Torsion group isomorphic to Z/2 × Z/4

In this section we present two approaches to finding curves with torsion group
isomorphic to Z/2 × Z/4. In the first we find curves with non-torsion points of
small height; in the second we present a family of such curves for which d and
the coordinates of a non-torsion point are parameterized in terms of points on
a related elliptic curve, the “generating curve”. We then study the effectiveness
of the curves in finding primes.

3.1. Finding curves with small parameters. To find curves with torsion
group isomorphic to Z/2×Z/4 and rank at least 1 we need to choose d so that
d = −e4 for some e ∈ Q and so that there exists a point which has infinite order.
All points of finite order are listed in the previous section, so this task amounts
to putting d = −a4/b4 for some positive a, b, and letting the coordinates of the
non-torsion point be x1 = b/c and y1 = b/f for c 6= ±f and c, f 6= 0. Such points
correspond to solutions of (c2 + b2)(f2 − b2) = a4 − b4. We iterated over many
small pairs (a, b) and tested for each divisor A1 of a4 − b4 whether A1 − b2 and
(a4−b4)/A1 +b2 are squares; after testing fewer than 1010 divisors we had found
793 different curves.

3.2. Infinite families. The point Q = (36,−864/5) is a non-torsion point on the
curve C in the following theorem. Almost all (u, v) = [i]Q satisfy the hypotheses
and generate curves with torsion group Z/2× Z/4 and rank at least 1.

Theorem 3.3. Let (u, v) with u 6= −324/25, (25v−1944)/30,−(25v+1944)/270,
−5v/24, (−25v+ 972)/45 or (25v− 3888)/180 be a rational point on the elliptic
curve C : V 2 = U3−11664U/25 over Q. Define e = (270u+ 25v+ 1944)/(30u−
25v+1944) and y1 = (30u−25v+1944)2/(−625v2+77760v+1250u3+24300u2−
3779136). Then the twisted Edwards curve E : −x2 +y2 = 1−e4x2y2 has torsion
group Z/2× Z/4 and (1/3, y1) is a non-torsion point on the curve.

Proof. For u 6= −324/25, (25v− 1944)/30,−(25v+ 1944)/270,−5v/24 the value
e is defined and not equal to 0,±1. The twisted Edwards curve E has the desired
torsion group, because a = −1, d = −e4 for some rational e and d is different
from 0 and −1.

If we require d = −e4 and that x = 1/3 is the x-coordinate of a point on
E we obtain −1/9 + y2

1 = 1 − (1/9)e4y2
1 which is a quadratic equation in y1

with the two solutions y1 = ±10/
√

90 + 10e4. These solutions are rational only
if 90 + 10e4 = r2. This defines an elliptic curve which is isomorphic to C :
V 2 = U3 − 11664U/25 and every point (u, v) on C gives a solution, namely e =
(270u+25v+1944)/(30u−25v+1944) and y1 = (30u−25v+1944)2/(−625v2 +
77760v + 1250u3 + 24300u2 − 3779136). This solution has been constructed to
have (1/3, y1) on the curve.

Section 2 lists all torsion points. The point (1/3, y1) is a non-torsion point,
unless e = ±3, i.e., unless u = (−25v + 972)/45 or (25v − 3888)/180. ut

It is possible to obtain more elliptic families by choosing different values for
the x-coordinate of the non-torsion point. Several, but not all, choices lead to
parameterizing curves of rank > 0.
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bits #1 #2 #3 #250 #500 #750 #1000 ratio

( 12
91 , 27

29 ) ( 23
14 , 49

578 ) ( 27
11 , 5

13 ) ( 1448
2151 , 1448

3697 ) [72] ( 1
8 , 196

689 ) ( 47
129 , 47

89 )

15 1089 1060 1057 1006 990 978 933 1.16720

( 27
11 , 5

13 ) ( 12
343 , 1404

1421 ) ( 12
41 , 16

461 ) ( 57
176 , 703

1252 ) ( 178
729 , 445

477 ) ( 1122
949 , 187

2405 ) ( 21
38 , 7

34 )

16 1564 1564 1546 1449 1428 1408 1345 1.16283

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 12
91 , 27

29 ) ( 949
1122 , 73

1110 ) [17] [135] ( 304
44187 , 76

85 )

17 2985 2928 2895 2742 2712 2686 2593 1.15118

( 27
11 , 5

13 ) ( 12
343 , 1404

1421 ) ( 13
16 , 64

233 ) [18] ( 888
539 , 111

401 ) ( 237
518 , 79

241 ) ( 133
219 , 665

877 )

18 5575 5529 5433 5163 5117 5076 4939 1.12877

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 3
14 , 1

17 ) ( 1173
161896 , 391

392 ) ( 9
13 , 405

12277 ) ( 946
11529 , 473

1017 ) ( 154
309 , 154

339 )

19 10200 9770 9629 9271 9212 9160 9004 1.13283

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 63
20 , 1

244 ) ( 19
1328 , 19

10064 ) ( 119
62 , 119

194 ) [168] ( 539
1278 , 539

1154 )

20 15486 14845 14537 13785 13706 13634 13379 1.15749

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 3
14 , 1

17 ) [29] ( 106
555 , 106

771 ) ( 28
101 , 1456

2777 ) ( 7
6 , 7

1385 )

21 22681 21745 21428 20095 19979 19886 19475 1.16462

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 3
14 , 1

17 ) ( 583
391986 , 583

585 ) ( 2755
10816 , 551

676 ) ( 59
133 , 59

377 ) ( 371
768 , 371

5440 )

22 46150 43916 43482 41185 40993 40843 40410 1.14204

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 3
14 , 1

17 ) [45] ( 671
234 , 671

11169 ) ( 2
309 , 26

519 ) ( 237
24256 , 79

164 )

23 82743 77161 76640 72681 72475 72293 71612 1.15543

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 12
91 , 27

29 ) [74] ( 8
39 , 1352

1385 ) ( 96
41 , 864

1241 ) ( 68
609 , 17

105 )

24 187596 177237 176170 167895 167509 167209 166251 1.12839

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 12
91 , 27

29 ) ( 20
11 , 80

10909 ) ( 119
11649 , 119

339 ) ( 959
3655 , 959

3845 ) ( 231
5780 , 231

289 )

25 311864 293153 289748 277183 276546 276098 274946 1.13427

( 12
343 , 1404

1421 ) ( 27
11 , 5

13 ) ( 12
91 , 27

29 ) ( 133
2419 , 95

101 ) ( 1199
13392 , 1199

1233 ) ( 322
251 , 161

353 ) ( 12
731 , 27

29 )

26 480006 451692 446071 424437 423131 422585 420891 1.14045

Table 3.1. Number of b-bit primes found by various curves having torsion group
Z/2×Z/4 and having a = −1, using standard EECM parameters. The “bits” column
is b. The “#1” column specifies a non-torsion point (x1, y1) on the curve that, out
of a pool of 1000 curves, was most effective at finding b-bit primes; and the number
of b-bit primes found by that curve. The “#2” column provides similar data for the
second-best curve out of the same pool. The “#1000” column provides similar data for
the worst curve out of the same pool. If [i] appears in place of (x1, y1) then it means
the curve generated by Theorem 3.3 using [i](36,−864/5). The “ratio” column is the
#1 number of primes divided by the #1000 number of primes.

3.4. Effectiveness. We modified the EECM-MPFQ software from [4] to test
1000 curves having torsion group Z/2 × Z/4 and having a = −1. These 1000
curves include the 793 small-coefficient curves mentioned above, and an addi-
tional 207 curves generated modulo n from the infinite family stated in Theo-
rem 3.3.

For each b ∈ {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26} we tried all 1000 of
these curves on all b-bit primes, i.e., all primes between 2b−1 and 2b. To simplify
comparisons we used the EECM parameters B1, d1 suggested in [4, Table 10.1]:
specifically, (16, 60) for b ∈ {15, 16}; (27, 60) for b = 17; (27, 90) for b = 18;
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(37, 90) for b ∈ {19, 20, 21}; (47, 120) for b = 22; (64, 120) for b = 23; (81, 210)
for b = 24; and (97, 210) for b ∈ {25, 26}.

Table 3.1 shows that curves with this torsion group vary quite dramatically in
effectiveness (number of primes found). The improvement from the worst curve
to the best curve fluctuates somewhat with b, hinting at interactions between
curve effectiveness and parameter choice, but is typically around 15%; see the
“ratio” column in the table. This improvement is not merely a matter of luck:
in particular, the interesting curve −x2 + y2 = 1 − (77/36)4x2y2, with torsion
group Z/2×Z/4 and non-torsion point (12/343, 1404/1421), easily outperforms
the other 999 curves for b ≥ 19, for example finding 46150 primes for b = 22.

For comparison, [4] reported finding 46323 of the 22-bit primes using the
curve x2 + y2 = 1 − (24167/25)x2y2 with torsion group Z/12 and non-torsion
point (5/23,−1/7). Switching to our curve −x2+y2 = 1−(77/36)4x2y2 produces
only a tiny decrease in effectiveness, 0.4%, while reducing the total ECM stage-
1-and-stage-2 cost from 1016M+276S to 970M+276S, a speedup of nearly 4%.
This is only the beginning of the comparison between a = −1 and a = 1: we have
identified better Z/12 curves, and better Z/2× Z/8 curves, but as described in
subsequent sections we have also identified better a = −1 curves.

4 Torsion group isomorphic to Z/8

We start this section by giving a parameterization of all curves having torsion
group isomorphic to Z/8 and then show how to construct these curves and how
effective they are.

Theorem 4.1. If u ∈ Q \ {0} then the twisted Edwards curve E : −x2 + y2 =
1 + dx2y2 over Q, where

x8 =
2u2 − 1

2u
, y8 =

2u2 + 1
2u

, d =
16u4

(4u4 − 1)2
,

has (x8, y8) as a point of order 8 and has torsion group isomorphic to Z/8.
Conversely, every twisted Edwards curve over Q with a = −1 and torsion

group isomorphic to Z/8 is expressible in this way.
The parameters u,−u, 1/(2u), and −1/(2u) give the same value of d and they

are the only values giving this d.

Proof. Note that d = ((4u2)/(4u4 − 1))2 is a square, that 1/(x4
8 + 2x2

8) =
(2u)4/((2u2 − 1)4 + 2(2u2 − 1)2(2u)2) = d, and that 1/(x8

√
d) = (2u(4u4 −

1))/(4u2(2u2−1)) = (2u2 + 1)/(2u) = y8. By Section 2, the curve E has (x8, y8)
as a point of order 8, and has torsion group isomorphic to Z/8.

Conversely, assume that a twisted Edwards curve with a = −1 has torsion
group isomorphic to Z/8 and has a point of order 8. So the curve can be expressed
in this form for some x8 ∈ Q \ {0} such that d = 1/(x4

8 + 2x2
8) is a square in Q.

In other words, x8 is a root of x4
8 + 2x2

8 − 1/d. Put x2
8 = T , then T is a root of

T 2 + 2T − 1/d which means that (d + 1)/d is a square, i.e. that d + 1 is also a
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square. Thus 1, d, and d+1 form a Pythagorean triple and can be parameterized
as d = (r2 − 1)2/(2r)2 and d + 1 = (r2 + 1)2/(2r)2 for r 6= 0. The solutions for
T are then 2/(r2 − 1) and −2r2/(r2 − 1). Obviously only one of them can be
positive for each choice of r, in particular the first one requires r2 > 1 while the
second one requires r2 < 1; changing r to 1/r changes from one value to the
other and if one is a square for r1 then the other one becomes one for 1/r1; d is
left invariant by this change.

It is thus sufficient to restrict to one case, so request that 2/(r2 − 1) is a
square in Q, i.e. r2 = 2s2 + 1. Define u as the slope of the line between (1, 0)
and (r, s): i.e., u = s/(r− 1). Substitute s = u(r− 1) into r2 = 2s2 + 1 to obtain
r = (2u2 + 1)/(2u2 − 1). This gives d = (r2 − 1)2/(2r)2 = (2u2 − 1)2((2u2 +
1)2 − (2u2 − 1)2)2/(4(2u2 + 1)2(2u2 − 1)4) = 16u4/(4u4 − 1)2, T = 2/(r2 − 1) =
2(2u2−1)2/((2u2 +1)2−(2u2−1)2) = (2u2−1)2/(4u2), i.e. x8 = (2u2−1)/(2u),
and y8 = 2u(4u4 − 1)/((2u2 − 1)4u2) = (2u2 + 1)/(2u).

The numerator of (d(u) − d(v)) factors as (u − v)(u + v)(uv − 1/2)(uv +
1/2)(u2+v2)(u2v2+1/4) showing that if v is any of the listed values u,−u, 1/(2u),
and −1(2u) then d(v) = d(u). Conversely, if v is not one of those values then
none of the factors u− v, u+ v, uv− 1/2, and uv+ 1/2 are 0 so d(v) 6= d(u). ut

4.2. Finding curves with small parameters. Theorem 4.1 gives a complete
parameterization of all twisted Edwards curves with a = −1 and torsion sub-
group isomorphic to Z/8. To find such curves of rank at least 1, i.e. with some
point (x1, y1) which is not a point of finite order, write u = a/b, x1 = (2a2−b2)/e,
and y1 = (2a2 +b2)/f where a, b, e, f are non-zero integers. Then a, b, e, f satisfy

((2a2 − b2)2 + e2)((2a2 + b2)2 − f2) = (2ab)4.

We searched for solutions by considering a range of positive integers a and in-
tegers 1 < b < a

√
2; this ensures u > 1/

√
2 which does not lose any generality

by Theorem 4.1. For each (a, b) we enumerated all divisors of (2ab)4, subtracted
(2a2 − b2)2 from each divisor, and searched for squares. As one would expect
from the degree of the equation, this search was less productive than the search
in Section 3: after a comparably fast test of 1010.66 divisors we had found just
3 curves, such as the curve −x2 + y2 = 1 + (784/2337)2x2y2 with non-torsion
point (8/49, 2337/2303).

4.3. Infinite families. The following theorem, applied to multiples of the non-
torsion point (4,−16) on the specified curve, produces infinitely many curves
with positive rank and torsion group isomorphic to Z/8.

Theorem 4.4. Let (r, s) be a rational point with r, s 6= 0 and s 6= ±4r on the
elliptic curve S2 = R3 + 48R over Q. Let u = 2r/s, v = (2r3 − s2)/s2 and
d = (16u4)/(4u4 − 1)2. The twisted Edwards curve −x2 + y2 = 1 + dx2y2 has
torsion subgroup Z/8 and (x1, y1) = (2u2, (4u4 − 1)/v) as a non-torsion point.

Proof. The conditions on r and s ensure that d is defined and 6= 0,−1; Theo-
rem 4.1 shows that the torsion group equals Z/8.
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bits #1 #2 #3 #250 #500 #750 #1000 ratio

[455] [763] [903] [580] [773] [73] [86]
15 1113 1108 1106 1059 1042 1026 973 1.14388

[899] [986] [880] [641] [648] [269] ( 133
156 , 697

528 )

16 1636 1633 1626 1549 1523 1500 1397 1.17108

[954] [985] [314] [830] [305] [641] [23]
17 2986 2970 2957 2878 2847 2817 2716 1.09941

[583] [585] [891] [722] [84] [57] [483]
18 5506 5487 5468 5356 5318 5281 5116 1.07623

[506] [825] [844] [932] [233] [256] [32]
19 9859 9821 9813 9652 9603 9551 9349 1.05455

( 27692
361875 , 362933

352275 ) [456] [765] [394] [466] [565] [475]
20 14823 14696 14675 14432 14370 14305 14053 1.05479

( 27692
361875 , 362933

352275 ) [670] [904] [128] [549] [604] [69]
21 21637 21499 21467 21157 21069 20983 20636 1.04851

( 27692
361875 , 362933

352275 ) [903] [704] [105] [690] [801] [893]
22 43760 43454 43411 43018 42888 42779 42331 1.03376

( 27692
361875 , 362933

352275 ) [887] [668] [989] [555] [87] [43]
23 76798 76675 76484 75983 75809 75640 75044 1.02337

( 27692
361875 , 362933

352275 ) [970] [554] [15] [791] [986] [47]
24 176146 174926 174911 174235 173994 173767 172910 1.01871

( 27692
361875 , 362933

352275 ) [655] [713] [950] [176] [247] [330]
25 291211 289378 289365 287993 287690 287384 286355 1.01696

( 27692
361875 , 362933

352275 ) [793] [457] [490] [468] [585] [721]
26 447683 443619 443432 442162 441787 441398 439094 1.01956

Table 4.1. Number of b-bit primes found by various curves having torsion group
Z/8 and having a = −1, using standard EECM parameters. Columns are defined as
in Table 3.1, except that if [i] appears in place of (x1, y1) then it means the curve
generated by Theorem 4.4 using [i](4,−16).

If we require d = (16u4)/(4u4 − 1)2 as in Theorem 4.1 and x1 = 2u2 then y1
has to satisfy y2

1 = (4u4−1)2(1+4u4)/((4u4−1)2−64u8) = (4u4−1)2/(−12u4+
1). So −12u4 + 1 must be a rational square. This leads to the elliptic curve
v2 = −12u4 +1, which is isomorphic to the Weierstrass curve C : S2 = R3 +48R
via u = 2R/S and v = (2R3 − S2)/S2. Any point (r, s) on C gives a point
(x1, y1) = (2u2, (4u4 − 1)/v) on the twisted Edwards curve.

Since u 6= 0 also x1 6= 0 and then x8 = x1 implies 2u2 = ±(2u2 − 1)/(2u)
which is excluded by s 6= ±4r. This means that (x1, y1) is different from all
torsion points listed in Section 2. ut

4.5. Effectiveness. We tried 1000 curves having torsion group Z/8 and hav-
ing a = −1, and measured their effectiveness by the procedures described in
Section 3. Table 4.1 reports the results. There is again a clear curve #1 whose
performance cannot be explained by random fluctuation. The average effective-
ness of Z/8 curves is higher than the average effectiveness of Z/2×Z/4 curves,
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but the variation is smaller, and the best Z/8 curve is not as good as the best
Z/2× Z/4 curve.

5 Torsion group isomorphic to Z/6

The structure of this section follows closely that of the previous one.

Theorem 5.1. If u ∈ Q \ {0,±1} then the twisted Edwards curve −x2 + y2 =
1 + dx2y2 over Q, where

x3 =
u2 − 1

2u
, y3 =

(u− 1)2

2u
, d = −16

u3(u2 − u+ 1)
(u− 1)6(u+ 1)2

,

has (x3, y3) as a point of order 3 and has torsion group isomorphic to Z/6.
Conversely, every twisted Edwards curve over Q with a = −1 and a point of
order 3 arises in this way.

The parameters u and 1/u give the same value of d.

Proof. For u ∈ Q \ {0,±1} the value d is defined and not equal to 0 or −1. Use
−x2

3 + y2
3 = − (u2−1)2

(2u)2 + (u−1)4

(2u)2 = −4u3+8u2−4u
(2u)2 = − 2(u−1)2

2u = −2y3 to see that
(x3, y3) is a point of order 3. Further observe that

−2y3 + 1
x2

3y
2
3

= − (2(u− 1)2 + 2u)(2u)4

2u(u2 − 1)2(u− 1)4
=

16u3(u2 − u+ 1)
(u+ 1)2(u− 1)6

= d.

Furthermore y3 /∈ {−2,−1/2, 0, 1} since u ∈ Q \ {0,±1}. By Section 2, the
twisted Edwards curve −x2 + y2 = 1 + dx2y2 over Q has (x3, y3) as a point of
order 3 and has torsion group isomorphic to Z/6.

Conversely, let x2
3 = y2

3+2y3, then 1 = (y3+1)2−x2
3 = (y3+1−x3)(y3+1+x3).

Splitting 1 as u · 1/u gives (y3 + 1 + x3) = u and (y3 + 1 − x3) = 1/u and
thus 2(y3 + 1) = u + 1/u and 2x3 = u − 1/u. The value for d follows from
d = −(2y3 + 1)/(x2

3y
2
3).

The numerator of (d(u)−d(v)) factors as (u− v)(uv− 1) times a polynomial
of degree 6 in u and v which does not factor over Q, showing there are no other
rational transformations leaving d invariant that work independently of u. ut

5.2. Finding curves with small parameters. Theorem 5.1 gives a complete
parameterization of all Edwards curves with torsion group isomorphic to Z/6.

Write u = a/b for integers a, b satisfying 0 < |b| < a, so |u| > 1 ensuring that
d is defined and avoiding repetitions of d by Theorem 5.1. Define e = (a2−b2)/x1

and f = −(a−b)2/y1, with integers e 6= f . Any solution to −x2
1 +y2

1 = 1+dx2
1y

2
1

corresponds to a point (a, b, e, f) on

((a2 − b2)2 + e2)((a− b)4 − f2) = (a2 + b2)3(b2 − 4ab+ a2).

We searched for solutions following the same strategy as in the previous
sections and within 1010.7 divisors had found 12 curves.
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5.3. Infinite families. Suyama [15] presented a rational family of Montgomery
curves with torsion containing Z/6. All Suyama curves can be translated to
twisted Edwards curves as shown in [4] but here we additionally require a = −1.
We now present an elliptic family that is a subfamily of Suyama’s construction
and satisfies a = −1.

Theorem 5.4. Let (u, v) be a rational point with u, v 6= 0 and u 6= 1/96, 1/192,
−1/384, 1/576 on the curve C : V 2 = U3−U2/2304−5U/221184+1/28311552.
Define σ = (1−96u)/(96u) and r = v/u2. Define α = σ2−5 and β = 4σ. Define
d = (β + α)3(β − 3α)/(r(β − α))2. Then the twisted Edwards curve −x2 + y2 =
1 + dx2y2 has torsion group isomorphic to Z/6 and a non-torsion point (x1, y1)
with x1 = 2rσ/((σ − 1)(σ + 5)(σ2 + 5)) and y1 = (α3 − β3)/(α3 + β3). A point
of order 3 is given by (x3, y3) = (−r/((σ − 1)(σ + 5)), (α− β)/(α+ β)).

Proof. The twisted Edwards curves −c2x2 + y2 = 1 + dx2y2 and −x̄2 + ȳ2 =
1 + (d/c2)x̄2ȳ2 are isomorphic with x̄ = cx. By Theorem 7.6 of [4] the Edwards
curves corresponding to Suyama curves have a = (β − α)3(3α + β) and d =
(β + α)3(β − 3α). To get an isomorphic curve with a = −1 we thus need that
(β − α)(3α + β) is the negative of a rational square. Expanding gives 3σ4 −
8σ3 − 46σ2 + 40σ + 75 = r2. This defines an elliptic curve isomorphic to C :
V 2 = U3 − U2/2304− 5U/221184 + 1/28311552, with σ = −(U − 1/96)/U and
r = V/U2. The values for x1, y1, and d in terms of s and t follow from c = r(β−α)
and the expressions in [4].

By the conditions on u, v all expressions are defined and d 6= 0,−1; further-
more (x1, y1) does not match any of the points of finite order. To verify the state-
ments on (x3, y3) observe that −x2

3 + y2
3 = 1 +dx2

3y
2
3 and that −x2

3 + y2
3 = −2y3,

showing that the point is on the curve and has order 3. ut

The elliptic curve C from the proof has rank 1 and torsion subgroup isomor-
phic to Z/2×Z/2. A non-torsion point is given by Q = (1/192, 1/4608), so (u, v)
can be chosen as a multiple [i]Q of Q with i > 1. One can also add points of
order 2 to these multiples; in particular, (1/1152, 7/55296) is −Q plus a point of
order 2, and generates σ = 11, a Suyama case that has already drawn attention
for being more effective than typical Suyama curves, as discussed in [2].

5.5. Effectiveness. We tried 1000 curves having torsion group Z/6 and having
a = −1, and measured their effectiveness as in Sections 3 and 4. Table 5.1
shows that these curves are extremely effective, even better than the Z/12 curve
measured in [4]. See Sections 6 and 7 for further discussion.

6 Effectiveness for Z/12 and Z/2 × Z/8

This paper proposes that the ECM curves used to find b-bit primes should be
selected by precomputing the most effective curves. Of course, this proposal is
not limited to the fast a = −1 curves analyzed in this paper; one can instead
precompute, e.g., the most effective Z/2× Z/8 curve.
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bits #1 #2 #3 #250 #500 #750 #1000 ratio

[58] [348] [853] [850] [799] [74] ( 176
321 , 2

123 )

15 1175 1173 1172 1128 1116 1104 1051 1.11798

[519] [532] [711] [170] [38] [460] ( 864
403 , 343

143 )

16 1779 1772 1751 1695 1677 1656 1546 1.15071

[745] [868] [971] [539] [425] [166] ( 176
321 , 2

123 )

17 3355 3343 3341 3253 3226 3202 3010 1.11462

[424] [310] [18] [379] [634] [463] ( 147
1696 , 14336

10229 )

18 6223 6209 6209 6104 6067 6034 5729 1.08623

[615] ( 825
2752 , 1521

1504 ) [96] [175] [375] [497] ( 864
403 , 343

143 )

19 10809 10802 10771 10640 10593 10538 10301 1.04932

[932] [94] [785] [334] [107] [466] ( 176
321 , 2

123 )

20 16328 16289 16287 16106 16037 15969 15399 1.06033

( 825
2752 , 1521

1504 ) [982] [265] [194] [669] [869] ( 749
3420 , 17199

122324 )

21 24160 24119 24113 23821 23735 23654 22790 1.06011

( 336
527 , 80

67 ) ( 825
2752 , 1521

1504 ) [306] [565] [960] [474] ( 147
1696 , 14336

10229 )

22 48424 48378 48357 47982 47867 47749 45828 1.05665

( 336
527 , 80

67 ) [604] [879] [861] [658] [3] ( 864
403 , 343

143 )

23 83943 83417 83360 82907 82755 82593 81114 1.03488

( 825
2752 , 1521

1504 ) [119] [90] [618] [728] [513] ( 147
1696 , 14336

10229 )

24 193069 192831 192667 191776 191526 191288 188198 1.02588

( 825
2752 , 1521

1504 ) [290] [149] [453] [708] [217] ( 176
321 , 2

123 )

25 318865 318680 318605 317555 317228 316924 311394 1.02399

( 825
2752 , 1521

1504 ) ( 336
527 , 80

67 ) [337] [303] [198] [577] ( 176
321 , 2

123 )

26 493470 493015 492320 490886 490477 490104 480263 1.02750

Table 5.1. Number of b-bit primes found by various curves having torsion group
Z/6 and having a = −1, using standard EECM parameters. Columns are defined as
in Table 3.1, except that if [i] appears in place of (x1, y1) then it means the curve
generated by Theorem 5.4 from [i](1/192, 1/4608).

We carried out computations for 1000 curves having Z/2×Z/8 torsion with
a = 1, and 1000 curves having Z/12 torsion with a = 1. For Z/2 × Z/8 we
used 975 curves from the (rank-1 elliptic) Atkin–Morain family [1], translated to
Edwards form in [4, Theorem 7.3], and 25 small-coefficient curves from [4, Section
8]. For Z/12 we used 922 curves from a (rank-1 elliptic) family introduced by
Montgomery in [12], translated analogously to Edwards form, and 78 small-
coefficient curves from [4, Section 8].

The results appear in Tables 6.1 and 6.2. It is clear from the tables that Z/12
a = 1 is very close in effectiveness to Z/6 a = −1, while Z/2 × Z/8 a = 1 is
noticeably worse: for example, the median Z/2 × Z/8 curve finds 46501 22-bit
primes, the median Z/12 curve finds 47521 22-bit primes, and the median Z/6
curve finds 47687 22-bit primes.

Recall that the small-coefficient Z/12 curve measured in [4] finds only 46323
22-bit primes. The Z/12 median reported here is dominated by the infinite family
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bits #1 #2 #3 #250 #500 #750 #1000 ratio

[792] [921] [389] [364] [647] [608] ( 29573281
31533721 , 29573281

79031041 )

15 1165 1164 1163 1112 1096 1082 1014 1.14892

[642] [915] [855] [537] [532] [467] ( 305
851 , 305

319 )

16 1726 1723 1716 1653 1634 1612 1506 1.14608

[920] [931] [908] [694] [929] [103] ( 89623
51987 , 33019

31961 )

17 3176 3163 3161 3045 3016 2988 2838 1.11910

[758] [22] [906] [868] [297] [392] ( 4913
377 , 51

19 )

18 5804 5781 5779 5665 5630 5588 5298 1.09551

[955] [370] [871] [564] [700] [747] [2]
19 10644 10635 10625 10439 10384 10333 10046 1.05953

[942] [350] [707] [654] [426] [596] ( 1025
1032 , 41

265 )

20 15980 15893 15870 15668 15607 15538 15096 1.05856

[943] [316] [369] [43] [764] [443] ( 1009
15801 , 41369

41441 )

21 23369 23354 23347 23081 22998 22903 22070 1.05886

[846] [724] [869] [743] [430] [46] ( 86866
18259 , 8481

4001 )

22 46990 46977 46964 46620 46501 46377 45299 1.03733

[972] [590] [261] [483] [367] [919] ( 18096
9793 , 62959

30191 )

23 83712 83706 83691 83181 83005 82828 81505 1.02708

[95] [485] [950] [637] [239] [116] ( 29573281
31533721 , 29573281

79031041 )

24 189700 189678 189660 188973 188724 188502 185854 1.02069

[657] [723] [667] [938] [629] [328] ( 7825
12866 , 22223

27025 )

25 313857 313718 313600 312577 312253 311942 308060 1.01882

[594] [269] [638] [801] [887] [631] ( 28577
34343 , 527

943 )

26 483474 483440 483431 482285 481868 481471 474443 1.01903

Table 6.1. Number of b-bit primes found by various curves having torsion group
Z/2×Z/8 and having a = 1, using standard EECM parameters. Columns are defined
as in Table 3.1.

of Z/12 curves, and it turns out that the average curves in that family are more
effective than most of the small-coefficient Z/12 curves. A similar effect occurs
for Z/2×Z/8. Countering this effect is a speedup mentioned in [4]: additions of
small-coefficient base points are much faster than additions of general points. In
this paper we ignore this speedup and count multiplications by small coefficients
as if they were as expensive as full multiplications.

7 Comparison

Among all of the 5000 curves measured here, the overall winner in effectiveness
for 22-bit primes is the curve −x2 + y2 = 1 − (6517/196608)x2y2, with torsion
group Z/6 and non-torsion point (336/527, 80/67). The runner-up for 22-bit
primes is the curve −x2 + y2 = 1 − (13312/18225)x2y2, with torsion group
Z/6 and non-torsion point (825/2752, 1521/1504). Compared to the Z/12 curve
measured in [4], both of these curves find 4% more primes and gain a further 4%
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bits #1 #2 #3 #250 #500 #750 #1000 ratio

[636] [872] [840] [516] [539] [218] ( 1159
191 , 3971

33239 )

15 1208 1206 1206 1158 1141 1120 1039 1.16266

[903] [884] [662] [385] [684] [170] ( 514917
463733 , 507

277 )

16 1829 1808 1807 1721 1690 1656 1509 1.21206

[780] [893] [850] [686] [172] [15] ( 424
18299 , 316

34075 )

17 3394 3371 3360 3264 3229 3193 3011 1.12720

[878] [671] [666] [678] [99] [82] ( 2511
4931 , 549

3301 )

18 6261 6218 6215 6076 6032 5986 5684 1.10151

[799] [918] [696] [203] [539] [253] ( 2223
1165 , 3887

4055 )

19 10882 10846 10846 10643 10582 10525 10181 1.06885

[918] [811] [719] [536] [165] [441] ( 1817
4267 , 2401

10081 )

20 16276 16275 16273 16052 15977 15890 15313 1.06289

[772] [663] ( 285
293 , 153

569 ) [386] [449] [737] ( 15375
31217 , 149609

124766 )

21 23991 23970 23965 23687 23590 23476 22714 1.05622

[861] [400] [648] [923] [421] [11] ( 4272
3007397 , 80

323 )

22 48076 48028 48020 47651 47521 47367 45987 1.04543

( 1856
1735 , 396

445 ) [662] [888] [799] [858] [695] ( 217
2687 , 8649

8599 )

23 83563 83242 83196 82643 82439 82260 80858 1.03345

( 285
293 , 153

569 ) [705] [673] [275] [161] [907] ( 31293
105533 , 160003

307178 )

24 192256 191836 191693 190997 190725 190459 187647 1.02456

( 285
293 , 153

569 ) [556] [575] [371] [463] [457] ( 192061
196355 , 2775125

13288277 )

25 317527 317372 317368 316185 315835 315485 310830 1.02155

( 285
293 , 153

569 ) ( 1856
1735 , 396

445 ) [85] [865] [695] [278] ( 2349
199 , 11907

21733 )

26 491042 490405 489815 488399 487954 487484 480509 1.02192

Table 6.2. Number of b-bit primes found by various curves having torsion group
Z/12 and having a = 1, using standard EECM parameters. Columns are defined as in
Table 3.1.

from the a = −1 speedup, for an overall improvement of 8% in price-performance
ratio. Our best Z/12 curves close only about half of the gap.

It is easy to point to algebraic reasons for the effectiveness of Z/6 a = −1
curves. Like all Suyama curves these curves have order divisible by 12 modulo
any prime. For primes p ∈ 1 + 4Z more is true, thanks to a = −1: the point
(
√
−1, 0) is defined over Fp and has order 4; if d is a square then there are extra

points of order 2 and 4; and if d is a 4th power then there is full 4-torsion. These
reasons suggest that the Z/6 curves with a = −1 are more effective than most
Suyama curves, and as effective as Z/12 curves, but do not explain why the
curves are more effective than Z/12 curves.

Figure 7.1 plots the price-performance ratio of all 5000 curves for b = 15: the
number of multiplications per prime found (but counting all multiplications in
stage 1 and stage 2 even for primes that actually skip stage 2), as in [4]. Figures
7.2, 7.3, and 7.4 plot data for b ∈ {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}.
These plots are directly comparable to the “ratio” column in [4, Table 10.1],
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reporting (e.g.) 1519.3 multiplications for b = 18 and 3914.1 multiplications
for b = 22. The “bumps” on the sides of several graphs are not random: they
illustrate the family effects mentioned above.

7.1. Further computations. We plan to extend our precomputations to other
choices of EECM-MPFQ parameters (B1, d1), to larger values of b, and to a
larger pool of curves for each b. We expect that our continuing computations
will gradually identify better and better curves for each b, mostly by luck for
smaller values of b but also by locating special curves such as −x2 + y2 =
1 − (13312/18225)x2y2. Rather than constantly updating this paper we will
maintain a web page showing the best results. Some of the other Z/2 × Z/8
families listed in [13] have rank 1; our guess is that none of the families will be
competitive with Z/6 but we plan to check this through computation.

Note that each of the curves we consider can be efficiently computed modulo
any desired n. The expense of this computation is at most the cost of a small
number of additions (modulo n) on a parameterizing elliptic curve. This cost is
noticeable only for very small b; it decreases rapidly as b increases.

ECM is normally applied as part of a series of computations: typically p− 1,
then p + 1, then one ECM curve, then another ECM curve, etc. We plan to
compute the best ECM curve for primes not found by the p − 1 method, the
best ECM curve for primes not found by the first curve, etc. Note that there
are some known correlations between ECM curves; for example, Z/12 prefers to
find primes in 1 + 3Z, while Z/2 × Z/8 prefers to find primes in 2 + 3Z. Our
greedy approach might not be optimal but we expect it to produce noticeably
better ECM sequences than choosing curves independently.

References

[1] A. O. L. Atkin, François Morain, Finding suitable curves for the elliptic curve
method of factorization, Mathematics of Computation 60 (1993), 399–405. ISSN
0025–5718. MR 93k:11115. URL: http://www.lix.polytechnique.fr/~morain/
Articles/articles.english.html. Citations in this document: §6.
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Fig. 7.1. Cost ratio for finding b-bit primes for b = 15. The horizontal axis is the
curve number c within a pool of 1000 curves, with the most effective curve on the
left and the least effective curve on the right. Horizontal tic marks appear at c ∈
{1, 2, 3, 250, 500, 750, 1000}. The horizontal scale is erf−1((c − 500)/501), so a normal
distribution would appear as approximately a straight line. The vertical axis is the total
number of multiplications and squarings used in stage 1 and stage 2 of EECM with
standard parameters, times the total number of b-bit primes, divided by the number of
b-bit primes found by the curve. The five graphs are, from top to bottom in the middle,
(green) Z/2× Z/4 with a = −1; (magenta) Z/8 with a = −1; (cyan) Z/2× Z/8 with
a = 1; (blue) Z/12 with a = 1; and (red) Z/6 with a = −1.
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Fig. 7.2. Cost ratio for finding b-bit primes for b ∈ {15, 16, 17, 18}. See Figure 7.1 for
explanation.
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Fig. 7.3. Cost ratio for finding b-bit primes for b ∈ {19, 20, 21, 22}. See Figure 7.1 for
explanation.
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Fig. 7.4. Cost ratio for finding b-bit primes for b ∈ {23, 24, 25, 26}. See Figure 7.1 for
explanation. The graph for b = 23 has Z/2× Z/8 below Z/12.


