Abstract
This paper improves the price-performance ratio of ECM, the elliptic-curve method of integer factorization. In particular, this paper constructs “a = − 1” twisted Edwards curves having Q-torsion group Z/2×Z/4, Z/8, or Z/6 and having a known non-torsion point; demonstrates that, compared to the curves used in previous ECM implementations, some of the new curves are more effective at finding small primes despite being faster; and precomputes particularly effective curves for several specific sizes of primes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atkin, A.O.L., Morain, F.: Finding suitable curves for the elliptic curve method of factorization. Mathematics of Computation 60, 399–405 (1993) ISSN 0025–5718. MR 93k:11115, http://www.lix.polytechnique.fr/~morain/Articles/articles.english.html Citations in this document: §6
Bărbulesc, R.: Familles de courbes adaptées à la factorisation des entiers (2009), http://hal.inria.fr/inria-00419218/PDF/Familles_version2.pdf Citations in this document: §1.3, §5.3
Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008 [16]. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008), http://eprint.iacr.org/2008/013 Citations in this document: §1.1
Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves (24 January 2010 version) (2010), http://eprint.iacr.org/2008/016 Citations in this document: §1.1, §1.1, §1.1, §1.1, §1.1, §1.2, §2, §3.4, §3.4, §3.4, §5.3, §5.3, §5.3, §5.5, §6, §6, §6, §6, §6, §7, §7, §7
Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007 [10]. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007), http://cr.yp.to/papers.html#newelliptic Citations in this document: §1.1
Bernstein, D.J., Lange, T.: A complete set of addition laws for incomplete Edwards curves (2009), http://eprint.iacr.org/2009/580 Citations in this document: §2
Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Mathematical Society 44, 393–422 (2007), http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html Citations in this document: §1.1
Hess, F., Pauli, S., Pohst, M. (eds.): ANTS 2006. LNCS, vol. 4076. Springer, Heidelberg (2006) ISBN 3-540-36075-1. See [17]
Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revisited. In: Asiacrypt 2008 [14] (2008), http://eprint.iacr.org/2008/522 Citations in this document: §1.1, §1.1
Kurosawa, K. (ed.): ASIACRYPT 2007. LNCS, vol. 4833. Springer, Heidelberg (2007), See [5]
Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987) ISSN 0003–486X. MR 89g:11125, http://links.jstor.org/sici?sici=0003-486X(198711)2:126:3<649:FIWEC>2.0.CO;2-V Citations in this document: §1
Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987) ISSN 0025–5718. MR 88e:11130, http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3 Citations in this document: §1.2, §6. See [15]
Montgomery, P.L.: An FFT extension of the elliptic curve method of factorization, Ph.D. thesis, University of California at Los Angeles (1992), ftp://ftp.cwi.nl/pub/pmontgom/ucladissertation.psl.gz Citations in this document: §1.2, §1.3, §7.1
Pieprzyk, J. (ed.): ASIACRYPT 2008. LNCS, vol. 5350. Springer, Heidelberg (2008) ISBN 978-3-540-89254-0. See [9]
Suyama, H.: Informal preliminary report (8), cited in [12] (1985), Citations in this document: §5.3
Vaudenay, S. (ed.): AFRICACRYPT 2008. LNCS, vol. 5023. Springer, Heidelberg (2008) ISBN 978-3-540-68159-5. See [3]
Zimmermann, P., Dodson, B.: 20 Years of ECM. In: ANTS 2006 [8], pp. 525–542 (2006) Citations in this document: §1.1, §1.2, §1.3
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bernstein, D.J., Birkner, P., Lange, T. (2010). Starfish on Strike. In: Abdalla, M., Barreto, P.S.L.M. (eds) Progress in Cryptology – LATINCRYPT 2010. LATINCRYPT 2010. Lecture Notes in Computer Science, vol 6212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14712-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-14712-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14711-1
Online ISBN: 978-3-642-14712-8
eBook Packages: Computer ScienceComputer Science (R0)