Abstract
Being able to understand dynamics of human mobility is essential for urban planning and transportation management. Besides geographic space, in this paper, we characterize mobility in a profile-based space (activity-aware map) that describes most probable activity associated with a specific area of space. This, in turn, allows us to capture the individual daily activity pattern and analyze the correlations among different people’s work area’s profile. Based on a large mobile phone data of nearly one million records of the users in the central Metro-Boston area, we find a strong correlation in daily activity patterns within the group of people who share a common work area’s profile. In addition, within the group itself, the similarity in activity patterns decreases as their work places become apart.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Turner, M., Love, S., Howell, M.: Understanding emotions experienced when using a mobile phone in public: The social usability of mobile (cellular) telephones. Telemat. Inf. 25(3), 201–215 (2008)
Nickerson, R.C., Isaac, H., Mak, B.: A multi-national study of attitudes about mobile phone use in social settings. Int. J. Mob. Commun. 6(5), 541–563 (2008)
Liu, C.C.: Measuring and prioritising value of mobile phone usage. Int. J. Mob. Commun. 8(1), 41–52 (2010)
Kauffman, R.J., Techatassanasoontorn, A.A.: International diffusion of digital mobile technology: A coupled-hazard state-based approach. Inf. Technol. and Management 6(2-3), 253–292 (2005)
Giray, F., Gercek, A., Oguzlar, A., Tuzunturk, S.: The effects of taxation on mobile phones: a panel data approach. Int. J. Mob. Commun. 7(5), 594–613 (2009)
Li, W., McQueen, R.J.: Barriers to mobile commerce adoption: an analysis framework for a country level perspective. Int. J. Mob. Commun. 6(2), 231–257 (2008)
Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)
Eagle, N., Pentland, A.: Eigenbehaviors: Identifying structure in routine. Proc. Roy. Soc. A (2006) (in submission)
Eagle, N.: Machine perception and learning of complex social systems. Ph.D. Thesis, Program in Media Arts and Sciences, Massachusetts Institute of Technology (2005)
Clauset, A., Eagle, N.: Ersistence and periodicity in a dynamic proximity network. In: Proceedings of Discrete Mathematics and Theoretical Computer Science Workshop on Computational Methods for Dynamic Interaction Networks (2007)
Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. PNAS (2007)
Phithakkitnukoon, S., Dantu, R.: Predicting calls — new service for an intelligent phone. In: Krishnaswamy, D., Pfeifer, T., Raz, D. (eds.) MMNS 2007. LNCS, vol. 4787, pp. 26–37. Springer, Heidelberg (2007)
Phithakkitnukoon, S., Dantu, R.: Cpl: Enhancing mobile phone functionality by call predicted list. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 571–581. Springer, Heidelberg (2008)
Phithakkitnukoon, S., Dantu, R.: Mobile social group sizes and scaling ratio. AI & Society, Springer (2009)
Phithakkitnukoon, S., Dantu, R.: Mobile social closeness and similarity in calling patterns. In: IEEE Conference on Consumer Communications & Networking Conference (CCNC 2010), Special Session on Social Networking, SocNets (2010)
Azevedo, T.S., Bezerra, R.L., Campos, C.A.V., de Moraes, L.F.M.: An analysis of human mobility using real traces. In: WCNC 2009: Proceedings of the 2009 IEEE conference on Wireless Communications & Networking Conference, Piscataway, NJ, USA, pp. 2390–2395. IEEE Press, Los Alamitos (2009)
Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: A mobility model for human walks. In: Proceedings of the 28th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Rio de Janeiro, Brazil. IEEE, Los Alamitos (April 2009)
Candia, J., Gonzalez, M.C., Wang, P., Schoenharl, T., Madey, G., Barabasi, A.: Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical 41(22), 1–16 (2008)
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)
Rhee, I., Lee, K., Hong, S., Kim, S.J., Chong, S.: Demystifying the levy-walk nature of human walks. Technical report, NCSU (2008)
Airsage: Airsage wise technology, http://www.airsage.com
Calabrese, F., Pereira, F.C., Lorenzo, G.D., Liu, L.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE Inter. Conf. on Pervasive Computing, PerComp. (2010)
pYsearch: Python APIs for Y! search services, http://pysearch.sourceforge.net/
Geopy: A Geocoding Toolbox for Python, http://code.google.com/p/geopy/wiki/ReverseGeocoding
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R., Ratti, C. (2010). Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds) Human Behavior Understanding. HBU 2010. Lecture Notes in Computer Science, vol 6219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14715-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-14715-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14714-2
Online ISBN: 978-3-642-14715-9
eBook Packages: Computer ScienceComputer Science (R0)