Skip to main content

Robot Grasping for Prosthetic Applications

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 66))

Abstract

Neurally controlled prosthetic devices capable of environmental manipulation have much potential towards restoring the physical functionality of disabled people. However, the number of user input variables provided by current neural decoding systems is much less than the number of control degrees-of-freedom (DOFs) of a prosthetic hand and/or arm. To address this sparse control problem, we propose the use of low-dimensional subspaces embedded within the pose space of a robotic limb. These subspaces are extracted using dimension reduction techniques to compress captured human hand motion into a (often two-dimensional) subspace that can be spanned by the output of neural decoding systems. To evaluate our approach, we explore a set of current state-of-the-art dimension reduction techniques and show results for effective control of a 13 DOF robot hand performing basic grasping tasks taking place in both static and dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bitzer, S., van der Smagt, P.: Learning EMG control of a robotic hand: towards active prostheses. In: IEEE International Conference on Robotics and Automation, Orlando, May 2006, pp. 2819–2823 (2006)

    Google Scholar 

  2. Crawford, B., Miller, K., Shenoy, P., Rao, R.: Real-time classification of electromyographic signals for robotic control. In: Association for the Advancement of Artificial Intelligence (AAAI), Pittsburg, PA, pp. 523–528 (July 2005)

    Google Scholar 

  3. Crawford, E., Veloso, M.: Learning to select negotiation strategies in multi-agent meeting scheduling. In: Working Notes of the AAAI Workshop on Multiagent Learning (2005)

    Google Scholar 

  4. del, J., Millan, R., Renkens, F., Mourino, J., Gerstner, W.: Brain-actuated interaction. Artif. Intell. 159(1-2), 241–259 (2004)

    Article  Google Scholar 

  5. Donoghue, J., Nurmikko, A., Friehs, G., Black, M.: Development of neural motor prostheses for humans. Advances in Clinical Neurophysiology (Supplements to Clinical Neurophysiology) 57 (2004)

    Google Scholar 

  6. Donoho, D., Grimes, C.: Hessian eigenmaps: Locally Linear Embedding techniques for high-dimensional data. Proc. National Academy of Sciences 100(10), 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)

    Google Scholar 

  8. Hochberg, L., Serruya, M., Friehs, G., Mukand, J., Saleh, M., Caplan, A., Branner, A., Chen, D., Penn, R., Donoghue, J.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)

    Article  Google Scholar 

  9. Jenkins, O.C.: 2D subspaces for sparse control of high-dof robots. In: Intl. Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2006), New York, NY, USA, August-September (2006)

    Google Scholar 

  10. Jenkins, O.C., Matarić, M.J.: A spatio-temporal extension to Isomap nonlinear dimension reduction. In: The International Conference on Machine Learning (ICML 2004), Banff, Alberta, Canada, July 2004, pp. 441–448 (2004)

    Google Scholar 

  11. Lin, J., Wu, Y., Huang, T.: Modeling the constraints of human hand motion. In: IEEE Workshop on Human Motion (2000)

    Google Scholar 

  12. Mason, C.R., Gomez, J.E., Ebner, T.J.: Hand synergies during reach-to-grasp. The Journal of Neurophysiology 86(6), 2896–2910 (2001)

    Google Scholar 

  13. Michelman, P., Allen, P.: Shared autonomy in a robot hand teleoperation system. In: Proceedings of the 1994 Conference on Intelligent Robotics Systems, Munich, Germany, September 1994, pp. 253–259 (1994)

    Google Scholar 

  14. Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell System Technical Journal, 1389–1409 (September 1981)

    Google Scholar 

  15. Serruya, M., Caplan, A., Saleh, M., Morris, D., Donoghue, J.: The BrainGate pilot trial: Building and testing a novel direct neural output for patients with severe motor impairment. In: Society for Neuroscience Annual meeting (October 2004)

    Google Scholar 

  16. Taylor, D., Tillery, S.H., Schwartz, A.: Information conveyed through brain control: Cursor versus robot. IEEE Transactions on Neural Systems and Rehabilition Engineering 11(2), 195–199 (2003)

    Article  Google Scholar 

  17. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  18. Todorov, E., Ghahramani, Z.: Analysis of the synergies underlying complex hand manipulation. In: Intl. Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, September 2004, pp. 4637–4640 (2004)

    Google Scholar 

  19. Weinberger, K., Sha, F., Zhu, Q., Saul, L.: Graph Laplacian methods for large-scale semidefinite programming, with an application to sensor localization. In: Schölkopf, B., Platt, J., Hofmann, T. (eds.) Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge (2007)

    Google Scholar 

  20. Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of multifunctional prosthetic hands by processing the electromyographic signal. Critical Reviews in Biomedical Engineering 30(4-6), 459–485 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsoli, A., Jenkins, O.C. (2010). Robot Grasping for Prosthetic Applications. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14743-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14742-5

  • Online ISBN: 978-3-642-14743-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics