Summary
This paper describes a body of work being undertaken by our research group aimed at extending the utility and reach of mobile navigation and mapping. Rather than dwell on SLAM estimation (which has received ample attention over past years), we examine sibling problems which remain central to the mobile autonomy agenda. We consider the problem detecting loop-closure from an extensible, appearance-based probabilistic view point and the use of visual geometry to impose topological constraints. We also consider issues concerning the intrinsic quality of 3D range data / maps and finally describe our progress towards substantially enhancing the semantic value of built maps through scene de-construction and labeling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.: Discriminative learning of markov random fields for segmentation of 3d scan data. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 169–176. IEEE Computer Society, Los Alamitos (2005)
Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Bosse, M., Roberts, J.: Histogram matching and global initialization for laser-only slam in large unstructured environments. In: ICRA, pp. 4820–4826 (2007)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)
Chandran-Ramesh, M., Newman, P.M.: Assessing map quality and error causations using conditional random fields. In: Proc. of the IFAC Symposium Intelligent Autonomous Vehicles (2007)
Chandran-Ramesh, M., Newman, P.M.: Assessing map quality using conditional random fields. In: Proc. of the International Conference on Field and Service Robotics (2007)
Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory IT-14(3) (May 1968)
Cole, D.M., Newman, P.M.: Context and feature sensitive re-sampling from discrete surface measurements. In: Robotics: Science and Systems (RSS), Atlanta, Georgia, USA (June 2007)
Comport, A.I., Malis, E., Rives, P.: Accurate quadri-focal tracking for robust 3d visual odometry. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2007, Rome, Italy (April 2007)
Cummins, M., Newman, P.: Probabilistic appearance based navigation and loop closing. In: Proc. IEEE International Conference on Robotics and Automation (ICRA 2007), Rome (April 2007)
Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually navigating the RMS Titanic with SLAM information filters. In: Proceedings of Robotics: Science and Systems, Cambridge, USA (June 2005)
Gutmann, J., Konolige, K.: Incremental mapping of large cyclic environments. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Monterey, California, November 1999, pp. 318–325 (1999)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, reprinted 2nd edn. Cambridge University Press, Cambridge (2004)
Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)
Konolige, K., Agrawal, M.: Frame-frame matching for realtime consistent visual mapping. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (April 2007)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)
Liao, L., Fox, D., Kautz, H.: Extracting places and activities from gps traces using hierarchical conditional random fields. The International Journal of Robotics Research 26(1), 119–134 (2007)
Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26(6), 756–770 (2004)
Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), pp. 652–659 (2004)
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)
Olson, E., Leonard, J., Teller, S.: Spatially-adaptive learning rates for online incremental slam. In: Proceedings of Robotics: Science and Systems, Atlanta, GA, USA (June 2007)
Platt, J.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola, A.J., Bartlett, P., Schoelkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74 (2000)
Posner, I., Schroeter, D., Newman, P.: Online generation of scene descriptions in urban environments. Robotics and Autonomous Systems, Semantic Knowledge in Robotics 56(11), 901–914 (2008)
Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, Nice, France (October 2003)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. Part 2. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)
Thrun, S., Montemerlo, M.: The graph slam algorithm with applications to large-scale mapping of urban structures. Int. J. Rob. Res. 25(5-6), 403–429 (2006)
Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Newman, P. et al. (2010). Describing, Navigating and Recognising Urban Spaces - Building an End-to-End SLAM System. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-14743-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14742-5
Online ISBN: 978-3-642-14743-2
eBook Packages: EngineeringEngineering (R0)