Skip to main content

Describing, Navigating and Recognising Urban Spaces - Building an End-to-End SLAM System

  • Conference paper
Robotics Research

Summary

This paper describes a body of work being undertaken by our research group aimed at extending the utility and reach of mobile navigation and mapping. Rather than dwell on SLAM estimation (which has received ample attention over past years), we examine sibling problems which remain central to the mobile autonomy agenda. We consider the problem detecting loop-closure from an extensible, appearance-based probabilistic view point and the use of visual geometry to impose topological constraints. We also consider issues concerning the intrinsic quality of 3D range data / maps and finally describe our progress towards substantially enhancing the semantic value of built maps through scene de-construction and labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.: Discriminative learning of markov random fields for segmentation of 3d scan data. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 169–176. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bosse, M., Roberts, J.: Histogram matching and global initialization for laser-only slam in large unstructured environments. In: ICRA, pp. 4820–4826 (2007)

    Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  5. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  6. Chandran-Ramesh, M., Newman, P.M.: Assessing map quality and error causations using conditional random fields. In: Proc. of the IFAC Symposium Intelligent Autonomous Vehicles (2007)

    Google Scholar 

  7. Chandran-Ramesh, M., Newman, P.M.: Assessing map quality using conditional random fields. In: Proc. of the International Conference on Field and Service Robotics (2007)

    Google Scholar 

  8. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory IT-14(3) (May 1968)

    Google Scholar 

  9. Cole, D.M., Newman, P.M.: Context and feature sensitive re-sampling from discrete surface measurements. In: Robotics: Science and Systems (RSS), Atlanta, Georgia, USA (June 2007)

    Google Scholar 

  10. Comport, A.I., Malis, E., Rives, P.: Accurate quadri-focal tracking for robust 3d visual odometry. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2007, Rome, Italy (April 2007)

    Google Scholar 

  11. Cummins, M., Newman, P.: Probabilistic appearance based navigation and loop closing. In: Proc. IEEE International Conference on Robotics and Automation (ICRA 2007), Rome (April 2007)

    Google Scholar 

  12. Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually navigating the RMS Titanic with SLAM information filters. In: Proceedings of Robotics: Science and Systems, Cambridge, USA (June 2005)

    Google Scholar 

  13. Gutmann, J., Konolige, K.: Incremental mapping of large cyclic environments. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Monterey, California, November 1999, pp. 318–325 (1999)

    Google Scholar 

  14. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, reprinted 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  15. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)

    Article  Google Scholar 

  16. Konolige, K., Agrawal, M.: Frame-frame matching for realtime consistent visual mapping. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (April 2007)

    Google Scholar 

  17. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  18. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from gps traces using hierarchical conditional random fields. The International Journal of Robotics Research 26(1), 119–134 (2007)

    Article  Google Scholar 

  19. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26(6), 756–770 (2004)

    Article  Google Scholar 

  20. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), pp. 652–659 (2004)

    Google Scholar 

  21. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  22. Olson, E., Leonard, J., Teller, S.: Spatially-adaptive learning rates for online incremental slam. In: Proceedings of Robotics: Science and Systems, Atlanta, GA, USA (June 2007)

    Google Scholar 

  23. Platt, J.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola, A.J., Bartlett, P., Schoelkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74 (2000)

    Google Scholar 

  24. Posner, I., Schroeter, D., Newman, P.: Online generation of scene descriptions in urban environments. Robotics and Autonomous Systems, Semantic Knowledge in Robotics 56(11), 901–914 (2008)

    Article  Google Scholar 

  25. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, Nice, France (October 2003)

    Google Scholar 

  26. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. Part 2. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Thrun, S., Montemerlo, M.: The graph slam algorithm with applications to large-scale mapping of urban structures. Int. J. Rob. Res. 25(5-6), 403–429 (2006)

    Article  Google Scholar 

  28. Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Newman, P. et al. (2010). Describing, Navigating and Recognising Urban Spaces - Building an End-to-End SLAM System. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14743-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14742-5

  • Online ISBN: 978-3-642-14743-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics