Summary
We present our vision-based system for grasping novel objects in cluttered environments. Our system can be divided into four components: 1) decide where to grasp an object, 2) perceive obstacles, 3) plan an obstacle-free path, and 4) follow the path to grasp the object. While most prior work assumes availability of a detailed 3-d model of the environment, our system focuses on developing algorithms that are robust to uncertainty and missing data, which is the case in real-world experiments. In this paper, we test our robotic grasping system using our STAIR (STanford AI Robots) platforms on two experiments: grasping novel objects and unloading items from a dishwasher. We also illustrate these ideas in the context of having a robot fetch an object from another room in response to a verbal request.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: ICRA (2000)
Mason, M.T., Salisbury, J.K.: Manipulator grasping and pushing operations. In: Robot Hands and the Mechanics of Manipulation. The MIT Press, Cambridge (1985)
Shimoga, K.: Robot grasp synthesis: a survey. IJRR 15, 230–266 (1996)
Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dexterous manipulation. In: ICRA (2000)
Saxena, A., Driemeyer, J., Kearns, J., Ng, A.Y.: Robotic grasping of novel objects. In: NIPS, vol. 19 (2006)
Saxena, A., Driemeyer, J., Kearns, J., Osondu, C., Ng, A.Y.: Learning to grasp novel objects using vision. In: ISER (2006)
Kragic, D., Christensen, H.I.: Robust visual servoing. IJRR 22, 923–939 (2003)
Piater, J.H.: Learning visual features to predict hand orientations. In: ICML Workshop on Machine Learning of Spatial Knowledge (2002)
Coelho, J., Piater, J., Grupen, R.: Developing haptic and visual perceptual categories for reaching and grasping with a humanoid robot. Robotics and Autonomous Systems 37, 195–218 (2001)
Morales, A., Sanz, P.J., del Pobil, A.P.: Vision-based computation of three-finger grasps on unknown planar objects. In: IEEE/RSJ Intelligent Robots and Systems Conference (2002)
Morales, A., Sanz, P.J., del Pobil, A.P., Fagg, A.H.: An experiment in constraining vision-based finger contact selection with gripper geometry. In: IEEE/RSJ Intelligent Robots and Systems Conference (2002)
Bowers, D.L., Lumia, R.: Manipulation of unmodeled objects using intelligent grasping schemes. IEEE Trans on Fuzzy Systems 11(3) (2003)
Kamon, I., Flash, T., Edelman, S.: Learning to grasp using visual information. In: ICRA (1996)
Edsinger, A., Kemp, C.C.: Manipulation in human environments. In: IEEE/RAS Int’l Conf. on Humanoid Robotics, Humanoids 2006 (2006)
Platt, R., Grupen, R., Fagg, A.: Improving grasp skills using schema structured learning. In: ICDL (2006)
Hsiao, K., Kaelbling, L., Lozano-Perez, T.: Grasping POMDPs. In: ICRA (2007)
Simeona, T., Laumond, J., Cortes, J., Sahbani, A.: Manipulation planning with probabilistic roadmaps. IJRR (2003)
Saxena, A., Driemeyer, J., Ng, A.Y.: Learning 3-D object orientation from images. Presented in NIPS workshop on Principles of Learning Problem Design (2007)
Thrun, S., Montemerlo, M.: The graphslam algorithm with applications to large-scale mapping of urban structures. IJRR 25, 403–430 (2005)
Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: NIPS, vol. 18 (2005)
Saxena, A., Schulte, J., Ng, A.Y.: Depth estimation using monocular and stereo cues. In: IJCAI (2007)
Saxena, A., Sun, M., Ng, A.Y.: Learning 3-d scene structure from a single still image. In: ICCV workshop on 3D Representation for Recognition (3dRR-07) (2007)
Saxena, A., Sun, M., Ng, A.Y.: 3-d reconstruction from sparse views using monocular vision. In: ICCV workshop on Virtual Representations and Modeling of Large-scale environments, VRML (2007)
Schwarzer, F., Saha, M., Latombe, J.-C.: Adaptive dynamic collision checking for single and multiple articulated robots in complex environments. IEEE Trans. on Robotics and Automation 21, 338–353 (2005)
Petrovskaya, A., Khatib, O., Thrun, S., Ng, A.Y.: Bayesian estimation for autonomous object manipulation based on tactile sensors. In: ICRA (2006)
Quigley, M., Berger, E., Ng, A.Y.: Stair: Hardware and software architecture. In: AAAI Robotics Workshop (2007)
Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: ICAR (2003)
Montemerlo, M., Roy, N., Thrun, S., Haehnel, D., Stachniss, C., Glover, J.: Carmen: Robot navigation toolkit (2000), http://carmen.sourceforge.net/
Microsoft, Microsoft robotics studio (2006), msdn.microsoft.com/robotics/
Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. In: IJRR (2008)
Gould, S., Arfvidsson, J., Kaehler, A., Sapp, B., Meissner, M., Bradski, G., Baumstarch, P., Chung, S., Ng, A.Y.: Peripheral-foveal vision for real-time object recognition and tracking in video. In: IJCAI (2007)
Krsmanovic, F., Spencer, C., Jurafsky, D., Ng, A.Y.: Have we met? MDP based speaker ID for robot dialogue. In: InterSpeech–ICSLP (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saxena, A., Wong, L., Quigley, M., Ng, A.Y. (2010). A Vision-Based System for Grasping Novel Objects in Cluttered Environments. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-14743-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14742-5
Online ISBN: 978-3-642-14743-2
eBook Packages: EngineeringEngineering (R0)