Skip to main content

Robot Kinematics and Dynamics for Modeling the Human Body

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 66))

Summary

A body of effort has been devoted to developing efficient algorithms for kinematics and dynamics computation of robotic mechanisms, and has been successfully applied to control and simulation of complex mechanisms including industrial manipulators and humanoid robots. Thanks to such effort, as well as the recent progress in the computation power, it is becoming more realistic to apply these algorithms to human body dynamics modeling and simulation. On the other hand, the human body has a number of different properties from robotic systems in its complexity, actuators, and controllers. This paper describes our attempt towards building a precise human body dynamics model for its motion analysis and simulation. In particular, we present how the algorithms developed in robotics are combined with physiological models and data to address the difficulties of handling real human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denavit, J., Hartenberg, R.: A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics 22, 215–221 (1955)

    MATH  MathSciNet  Google Scholar 

  2. Luh, J., Walker, M., Paul, R.: On-line Computational Scheme for Mechanical Manipulators. ASME Journal on Dynamic Systems, Measurment and Control 104, 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  3. Featherstone, R.: Robot Dynamics Algorithm. Kluwer Academic Publishers, Boston (1987)

    Google Scholar 

  4. Delp, S., Loan, J.: A computational framework for simulating and analyzing human and animal movement. IEEE Computing in Science and Engineering 2, 46–55 (2000)

    Google Scholar 

  5. Rasmussen, J., Damsgaard, M., Surma, E., Christensen, S., de Zee, M., Vondrak, V.: AnyBody—a software system for ergonomic optimization. In: Fifth World Congress on Structural and Multidisciplinary Optimization (2003)

    Google Scholar 

  6. Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., Guendelman, E., Thelen, D.: OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering (in press, 2007)

    Google Scholar 

  7. Kuo, A.: A least-squares estimation approach to improving the precision of inverse dynamics computations. Journal of Biomechanical Engineering 120(1), 148–159 (1998)

    Article  Google Scholar 

  8. Blajer, W., Dziewiecki, K., Mazur, Z.: Multibody modeling of human body for the inverse dynamics analysis of sagittal plane movements. Multibody System Dynamics 18(2), 217–232 (2007)

    Article  MATH  Google Scholar 

  9. Challis, J.H.: Producing physiologically realistic individual muscle force estimations by imposing constraints when using optimization techniques. Medical Engineering & Physics 19(3), 253–261 (1997)

    Article  Google Scholar 

  10. Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max criterion—a comparative study. Journal of Biomechanics 34(3), 409–415 (2001)

    Article  Google Scholar 

  11. Forster, E., Simon, U., Augat, P., Claes, L.: Extension of a state-of-the-art optimization criterion to predict co-contraction. Journal of Biomechanics 37(4), 577–581 (2004)

    Article  Google Scholar 

  12. Lloyd, D., Besier, T.: An emg-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics 36(6), 765–776 (2003)

    Article  Google Scholar 

  13. Buchanan, T., Lloyd, D., Manal, K., Besier, T.: Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Medicine and Science in Sports and Exercise 37(11), 1911–1916 (2005)

    Article  Google Scholar 

  14. Hatze, H.: The fundamental problem of myoskeletal inverse dynamics and its implications. Journal of Biomechanics 35(1), 109–115 (2002)

    Article  Google Scholar 

  15. Thelen, D., Anderson, F., Delp, S.: Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics 36(3), 321–328 (2003)

    Article  Google Scholar 

  16. Luh, J., Walker, M., Paul, R.: Resolved Acceleration Control of Mechanical Manipulators. IEEE Transactions on Automatic Control 25(3), 468–474 (1980)

    Article  MATH  Google Scholar 

  17. Anderson, F., Pandy, M.: Dynamic optimization of human walking. ASME Journal of Biomechanical Engineering 123, 381–389 (2001)

    Article  Google Scholar 

  18. Anderson, F., Pandy, M.: A dynamic optimization solution for vertical jumping in three dimensions. Computer Methods in Biomechanics and Biomedical Engineering 2, 201–231 (1999)

    Article  Google Scholar 

  19. Anderson, F., Pandy, M.: Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics 34, 153–161 (2001)

    Article  Google Scholar 

  20. Nedel, L., Thalmann, D.: Modeling and deformation of human body using an anatomy-based approach. In: Proceedings of Computer Animation 1998, pp. 34–40 (1998)

    Google Scholar 

  21. Ng-Thow-Hing, V.: Anatomically-based models for physical and geometric reconstruction of humans and other animals. Ph.D. dissertation, University of Toronto (2001)

    Google Scholar 

  22. Teran, J., Blemker, S.: Finite volume methods for the simulation of skeletal muscle. In: Proceedings of SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 68–74 (2003)

    Google Scholar 

  23. Scheepers, F., Parent, R., Carlson, W., May, S.: Anatomy-based modeling of the human musculature. In: Proceedings of SIGGRAPH 1997, pp. 163–172 (1997)

    Google Scholar 

  24. Wilhelms, J., Van Gelder, A.: Anatomically based modeling. In: Proceedings SIGGRAPH 1997, pp. 173–180 (1997)

    Google Scholar 

  25. Nakamura, Y., Yamane, K., Fujita, Y., Suzuki, I.: Somatosensory computation for man-machine interface from motion capture data and musculoskeletal human model. IEEE Transactions on Robotics 21(1), 58–66 (2005)

    Article  Google Scholar 

  26. Orin, D., Schrader, W.: Efficient Computation of the Jacobian for Robot Manipulators. International Journal of Robotics Research 3(4), 66–75 (1984)

    Article  Google Scholar 

  27. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London 126, 136–195 (1938)

    Article  Google Scholar 

  28. Stroeve, S.: Impedance Chracteristics of a Neuro-Musculoskeletal Model of the Human Arm I: Posture Control. Journal of Biological Cyberneics 81, 475–494 (1999)

    Article  MATH  Google Scholar 

  29. Yamane, K., Fujita, Y., Nakamura, Y.: Estimation of physically and physiologically valid somatosensory information. In: Proceedings of IEEE International Conference on Robotics and Automation, Barcelona,Spain, April 2005, pp. 2635–2641 (2005)

    Google Scholar 

  30. Nakamura, Y., Yamane, K., Murai, A.: Macroscopic modeling and identification of the human neuromuscular network. In: Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York City, NY, August 2006, pp. 99–105 (2006)

    Google Scholar 

  31. Fijany, A., Sharf, I., D’Eleuterio, G.: Parallel O(logN) Algorithms for Computation of Manipulator Forward Dynamics. IEEE Transactions on Robotics and Automation 11(3), 389–400 (1995)

    Article  Google Scholar 

  32. Featherstone, R.: A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part1: Basic Algorithm. International Journal of Robotics Research 18(9), 867–875 (1999)

    Article  Google Scholar 

  33. Yamane, K., Nakamura, Y.: O(N) Forward Dynamics Computation of Open Kinematic Chains Based on the Principle of Virtual Work. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2824–2831 (2001)

    Google Scholar 

  34. Yamane, K., Nakamura, Y.: Efficient Parallel Dynamics Computation of Human Figures. In: Proceedings of the IEEE International Conference on Robotics and Automation, May 2002, pp. 530–537 (2002)

    Google Scholar 

  35. Yamane, K., Nakamura, Y.: Parallel O(logN) Algorithm for Dynamics Simulation of Humanoid Robots. In: Proceedings of IEEE-RAS International Conference on Humanoid Robotics, Genoa, Italy, December 2006, pp. 554–559 (2006)

    Google Scholar 

  36. Murai, A., Yamane, K., Nakamura, Y.: Modeling and identifying the somatic reflex network of the human neuromuscular system. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2717–2721 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamane, K., Nakamura, Y. (2010). Robot Kinematics and Dynamics for Modeling the Human Body. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14743-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14742-5

  • Online ISBN: 978-3-642-14743-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics