Abstract
Nonparametric estimation of transition probabilities for a censored multi-state model is traditionally performed under a Markov assumption. However, this assumption may (and will) fail in some applications, leading to the inconsistency of the time-honoured Aalen-Johansen estimator. In such a case, alternative (non-Markov) estimators are needed. In this work we review some recent developments in this area. We also review the key problem of testing if a given (censored) multi-state model is Markov, giving modern ideas for the construction of an omnibus test statistic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aalen, O., Johansen, S.: An empirical transition matrix for nonhomogeneous Markov chains based on censored observations. Scand. J. Stat. 5, 141–150 (1978)
Andersen, P.K., Esbjerj, S., Sorensen, T.I.A.: Multistate models for bleeding episodes and mortality in liver cirrhosis. Stat. Med. 19, 587–599 (2000)
Datta, S., Satten, G.A.: Validity of the AalenJohansen estimators of stage occupation probabilities and Nelson Aalen integrated transition hazards for non-Markov models. Stat. Probab. Lett. 55, 403–411 (2001)
Glidden, D.: Robust inference for event probabilities with non-Markov event data. Biometrics 58, 361–368 (2002)
Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C.: Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal. 12, 325–344 (2006)
Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C., Andersen, P.K.: Multi-state models for the analysis of time-to-event data. Statist. Meth. Med. Research 18, 195–222 (2009)
Stute, W.: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45, 89–103 (1993)
de Uña-Álvarez, J.: Estimación no paramétrica en modelos multi-estado no-Markovianos. In: Actas del XXX Congreso Nacional de la SEIO, Valladolid, Spain (2007a)
de Uña-Álvarez, J.: Testing that a multi-state model is Markov: new methods. In: Gomes, M.I., Pestana, D., Silva, P. (eds.) Abstracts of the 56th Session of the ISI, Lisbon, Portugal (2007b)
de Uña-Álvarez, J., Amorim, A.P.: A semiparametric estimator of the bivariate distribution function for censored gap times. Discussion Papers in Statistics and OR 09/03, University of Vigo (2009)
de Uña-Álvarez, J., Amorim, A.P., Meira-Machado, L.: Presmoothing the transition probabilities in the illness-death model (in preparation, 2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Uña-Álvarez, J. (2010). Recent Developments in Censored, Non-Markov Multi-State Models. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-14746-3_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14745-6
Online ISBN: 978-3-642-14746-3
eBook Packages: EngineeringEngineering (R0)