Abstract
We present a new approach to the evaluation of similarity of time series that are characterized by linguistic summaries. We consider so-called temporal data summaries, i.e. novel linguistic summaries that explicitly include a temporal aspect. We consider the case of a mutual (investment) fund and its underlying benchmark(s), and the new comparison method is based not on the comparison of the consecutive values or segments of the fund and its benchmark but on the comparison of classic and temporal linguistic summaries (i.e. based on a classic and temporal protoform) best describing their past behavior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)
Chan, K.P., Fu, W.C.: Efficient time series matching by wavelets. In: Proceedings of the 15th International Conference on Data Engineering, ICDE 1999, Sydney, Austrialia, p. 126. IEEE Computer Society, Los Alamitos (1999)
Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–498 (2003)
Cross, V., Sudkamp, T.: Similarity and Compatibility in Fuzzy Set Theory: Assessment and Applications. Springer, Heidelberg (2002)
Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 88–100. Springer, Heidelberg (1997)
Geurts, P.: Pattern extraction for time series classification. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 115. Springer, Heidelberg (2001)
Kacprzyk, J., Fedrizzi, M.: ’Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control Cybernet 15, 309–323 (1986)
Kacprzyk, J., Fedrizzi, M.: A ’soft‘ measure of consensus in the setting of partial (fuzzy) preferences. European J. Oper. Res. 34, 315–325 (1988)
Kacprzyk, J., Fedrizzi, M.: A ’human-consistent‘ degree of consensus based on fuzzy logic with linguistic quantifiers. Math. Social Sci. 18, 275–290 (1989)
Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst. 49, 21–31 (1992)
Kacprzyk, J., Wilbik, A.: Using fuzzy linguistic summaries for the comparison of time series: an application to the analysis of investment fund quotations. In: Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, IFSA/EUSFLAT 2009, Lisbon, Portugal, pp. 1321–1326 (2009)
Kacprzyk, J., Wilbik, A.: A comprehensive comparison of time series described by linguistic summaries and its application to the analysis of performance of a mutual fund and its benchmark. In: Proceedings of the 2010 World Conference on Computational Intelligence, WCCI 2010, Barcelona, Spain (in press, 2010)
Kacprzyk, J., Wilbik, A.: Temporal linguistic summaries of time series using fuzzy logic. In: Proceedings of International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2010, Dortmund, Germany (in press, 2010)
Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. Int. J. Gen. Syst. 30, 33–154 (2001)
Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms: toward natural language based knowledge discovery tools. Inform. Sci. 173, 281–304 (2005)
Kacprzyk, J., Zadrożny, S.: Towards a general and unified characterization of individual and collective choice functions under fuzzy and nonfuzzy preferences and majority via the ordered weighted average operators. Int. J. Intell. Syst. 24(1), 4–26 (2009)
Kacprzyk, J., Zadrożny, S.: Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries and natural language generation. IEEE Trans. Fuzzy Syst. (to appear, 2010)
Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic summaries of databases. Int. J. Appl. Math. Comput. Sci. 10, 813–834 (2000)
Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series under different granulation of describing features. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 230–240. Springer, Heidelberg (2007)
Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inform. Syst. 7(3), 358–386 (2005)
Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally adaptive dimensionality reduction for indexing large time series databases. In: Proceedings of ACM SIGMOD Conference on Management of Data, Santa Barbara, CA, pp. 151–162 (2001)
Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and novel approach. In: Data Mining in Time Series Databases, World Scientific Publishing, Singapore (2004)
Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: Proceedings of the SIAM International Conference on Data Mining, SDM 2009, Sparks, Nevada, USA, pp. 473–484 (2009)
Yager, R.R.: A new approach to the summarization of data. Inform. Sci. 28, 69–86 (1982)
Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 9(2), 111–127 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kacprzyk, J., Wilbik, A. (2010). Comparison of Time Series via Classic and Temporal Protoforms of Linguistic Summaries: An Application to Mutual Funds and Their Benchmarks. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-14746-3_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14745-6
Online ISBN: 978-3-642-14746-3
eBook Packages: EngineeringEngineering (R0)