Skip to main content

On Some Confidence Regions to Estimate a Linear Regression Model for Interval Data

  • Conference paper
Combining Soft Computing and Statistical Methods in Data Analysis

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 77))

Abstract

Least-squares estimation of various linear models for interval data has already been considered in the literature. One of these models allows different slopes for mid-points and spreads (or radii) integrated in a unique equation based on interval arithmetic. A preliminary study about the construction of confidence regions for the parameters of that model on the basis of the least-squares estimators is presented. Due to the lack of realistic parametric models for random intervals, bootstrap approaches are proposed. The empirical suitability of the bootstrap confidence sets will be shown by means of some simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blanco-Fernández, A., Colubi, A., Corral, N., González-Rodríguez, G.: On a linear independence test for interval-valued random sets. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Handling Variability and Imprecision. Advances in Soft Computing, vol. 48, pp. 331–337. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Blanco-Fernández, A., Corral, N., González-Rodríguez, G.: Estimation of a flexible simple linear model for interval data based on the set arithmetic (submitted for publication, 2010)

    Google Scholar 

  4. Gil, M.A., Lubiano, M.A., Montenegro, M., López-García, M.T.: Least squares fitting of an affine function and strength of association for interval-valued data. Metrika 56, 97–111 (2002)

    Article  MathSciNet  Google Scholar 

  5. Gil, M.A., González-Rodríguez, G., Colubi, A., Montenegro, M.: Testing linear independence in linear models with interval-valued data. Comput. Statist. Data Anal. 51(6), 3002–3015 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. González-Rodríguez, G., Blanco-Fernández, A., Corral, N., Colubi, A.: Least squares estimation of linear regression models for convex compact random sets. Adv. Data Anal. Class. 1, 67–81 (2007)

    Article  MATH  Google Scholar 

  7. Montenegro, M., Casals, M.R., Lubiano, M.A., Gil, M.A.: Two-sample hypothesis tests of means of a fuzzy random variable. Inf. Sci. 133, 89–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Montenegro, M., Colubi, A., Casals, M.R., Gil, M.A.: Asymptotic and Bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59(1), 31–49 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer, New York (1995)

    MATH  Google Scholar 

  10. Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact convex (fuzzy) sets based on a generalized concept of mid and spread. Inf. Sci. 179(23), 3964–3972 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanco-Fernández, A., Corral, N., González-Rodríguez, G., Palacio, A. (2010). On Some Confidence Regions to Estimate a Linear Regression Model for Interval Data. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14746-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14745-6

  • Online ISBN: 978-3-642-14746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics