Abstract
In this paper, we firstly introduce the concept of set-valued square integrable martingales. Secondly, we give the definition of stochastic integral of a stochastic process with respect to a set-valued square integrable martingale, and then prove the representation theorem of this kind of integral processes. Finally, we show that the stochastic integral process is a set-valued sub-martingale.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahmed, N.U.: Nonlinear Stochastic differential inclusions on Banach space. Stoch. Anal. Appl. 12, 1–10 (1994)
Aubin, J.P., Prato, G.D.: The viability theorem for stochastic differenrial inclusions. Stoch. Anal. Appl. 16, 1–15 (1998)
Aumann, R.: Integrals of set valued functions. J. Math Anal. Appl. 12, 1–12 (1965)
Bagchi, S.: On a.s. convergence of classes of multivalued asymptotic martingales. Ann. Inst. H. Poincaré Probab. Statist. 21, 313–321 (1985)
Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Lecture Notes in Math., vol. 580. Springer, Berlin (1977)
Da Prato, G., Frankowska, H.: A stochastic Filippov theorem. Stoch. Anal. Appl. 12, 409–426 (1994)
Van. Cutsem, B.: Martingales de multiapplications à valeurs convexes compactes. C. R. Math. Acad. Sci. Paris 269, 429–432 (1969)
Jung, E.J., Kim, J.H.: On set-valued stochastic integrals. Stoch. Anal. Appl. 21, 401–418 (2003)
Hess, C.: On multivalued martingales whose values be unbounded: martingale selectors and Mosco convergence. J. Multivariate Anal. 39, 175–201 (1991)
Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7, 149–182 (1977)
Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Kluwer Academic Publishers, Dordrecht (1997)
de Korvin, A., Kleyle, R.: A convergence theorem for convex set valued supermartingales. Stoch. Anal. Appl. 3, 433–445 (1985)
Karatzas, I.: Lectures on the mathematics of finance. American Mathematical Society, Providence (1997)
Kim, B.K., Kim, J.H.: Stochastic integrals of set-valued processes and fuzzy processes. J. Math. Anal. Appl. 236, 480–502 (1999)
Kisielewicz, M.: Set valued stochastic integrals and stochastic inclusions. Discuss. Math. 13, 119–126 (1993)
Kisielewicz, M.: Set-valued stochastic integrals and stochastic inclusions. Stoch. Anal. Appl. 15, 783–800 (1997)
Kisielewicz, M.: Weak compactness of solution sets to stochastic differential inclusions with non-convex right-hand sides. Stoch. Anal. Appl. 23, 871–901 (2005)
Kisielewicz, M., Michta, M., Motyl, J.: Set valued approach to stochastic control, part I: existence and regularity properties. Dynam. Systems Appl. 12, 405–432 (2003)
Kisielewicz, M., Michta, M., Motyl, J.: Set valued approach to stochastic control, part II: viability and semimartingale issues. Dynam. Systems Appl. 12, 433–466 (2003)
Li, J., Li, S.: Set-valued stochastic Lebesgue integral and representation theorems. Int. J. Comput. Intell. Syst. 1, 177–187 (2008)
Li, J., Li, S., Ogura, Y.: Strong solution of Itô type set-valued stochastic differential equation. Acta Math. Sinica (to appear, 2010)
Li, S., Li, J., Li, X.: Stochastic integral with respect to set-valued square integrable martingales. J. Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.04.040
Li, S., Ogura, Y.: Convergence of set valued sub- and super-martingales in the Kuratowski-Mosco sense. Ann. Probab. 26, 1384–1402 (1998)
Li, S., Ogura, Y.: Convergence of set valued and fuzzy valued martingales. Fuzzy Sets Syst. 101, 453–461 (1999)
Li, S., Ogura, Y.: A convergence theorem of fuzzy-valued martingales in the extended Hausdorff metric H ∞ . Fuzzy Sets Syst. 135, 391–399 (2003)
Li, S., Ogura, Y., Kreinovich, V.: Limit theorems and applications of set-valuded and fuzzy sets-valued random variables. Kluwer Academic Publishers, Dordrecht (2002)
Li, S., Ren, A.: Representation theorems, set-valued and fuzzy set-valued Itô intergal. Fuzzy Sets Syst. 158, 949–962 (2007)
Luu, D.Q.: Representations and regularity of multivalued martingales. Acta Math. Vietnam. 6, 29–40 (1981)
Luu, D.Q.: Applications of set-valued Radon-Nikodym theorms to convergence of multivalued L 1-amarts. Math. Scand. 54, 101–114 (1984)
Molchanov, I.: Theory of Random Sets. Springer, London (2005)
Oksendal, B.: Stochastic Differential Equations. Springer, London (1995)
Papageorgiou, N.S.: On the theory of Banach space valued multifunctions. 1. integration and conditional expectation. J. Multivariate Anal. 17, 185–206 (1985)
Papageorgiou, N.S.: A convergence theorem for set valued multifunctions. 2. set valued martingales and set valued measures. J. Multivariate Anal. 17, 207–227 (1985)
Papageorgiou, N.S.: On the conditional expectation and convergence properties of random sets. Trans. Amer. Math. Soc. 347, 2495–2515 (1995)
Qi, Y., Wang, R.: Set-valued stochastic integral of bounded predictable processes w.r.t. square integrable martingale. Comm. Appl. Math. Comput. 2, 77–81 (1998)
Shreve, S.E.: Stochastic Calculus for Finance. Springer, London (2004)
Wang, Z.P., Xue, X.: On convergence and closedness of multivalued martingales. Trans. Amer. Math. Soc. 341, 807–827 (1994)
Zhang, J., Li, S., Mitoma, I., Okazaki, Y.: On set-valued stochastic integrals in an M-type 2 Banach space. J. Math. Anal. Appl. 350, 216–233 (2009)
Zhang, J., Li, S., Mitoma, I., Okazaki, Y.: On the solution of set-valued stochastic differential equation in M-type 2 Banach space. Tohoku Math. J. 61, 417–440 (2009)
Zhang, W., Gao, Y.: A convergence theorem and Riesz decomposition for set valued supermartingales. Acta Math. Sinica 35, 112–120 (1992)
Zhang, W., Li, S., Wang, Z., Gao, Y.: An introduction of set-valued stochastic processes. Science Press, Beijing (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, S. (2010). Set-Valued Square Integrable Martingales and Stochastic Integral. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-14746-3_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14745-6
Online ISBN: 978-3-642-14746-3
eBook Packages: EngineeringEngineering (R0)