Skip to main content

Set-Valued Square Integrable Martingales and Stochastic Integral

  • Conference paper
Combining Soft Computing and Statistical Methods in Data Analysis

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 77))

  • 1644 Accesses

Abstract

In this paper, we firstly introduce the concept of set-valued square integrable martingales. Secondly, we give the definition of stochastic integral of a stochastic process with respect to a set-valued square integrable martingale, and then prove the representation theorem of this kind of integral processes. Finally, we show that the stochastic integral process is a set-valued sub-martingale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, N.U.: Nonlinear Stochastic differential inclusions on Banach space. Stoch. Anal. Appl. 12, 1–10 (1994)

    Article  MATH  Google Scholar 

  2. Aubin, J.P., Prato, G.D.: The viability theorem for stochastic differenrial inclusions. Stoch. Anal. Appl. 16, 1–15 (1998)

    Article  MATH  Google Scholar 

  3. Aumann, R.: Integrals of set valued functions. J. Math Anal. Appl. 12, 1–12 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bagchi, S.: On a.s. convergence of classes of multivalued asymptotic martingales. Ann. Inst. H. Poincaré Probab. Statist. 21, 313–321 (1985)

    MATH  MathSciNet  Google Scholar 

  5. Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Lecture Notes in Math., vol. 580. Springer, Berlin (1977)

    MATH  Google Scholar 

  6. Da Prato, G., Frankowska, H.: A stochastic Filippov theorem. Stoch. Anal. Appl. 12, 409–426 (1994)

    Article  MATH  Google Scholar 

  7. Van. Cutsem, B.: Martingales de multiapplications à valeurs convexes compactes. C. R. Math. Acad. Sci. Paris 269, 429–432 (1969)

    MATH  Google Scholar 

  8. Jung, E.J., Kim, J.H.: On set-valued stochastic integrals. Stoch. Anal. Appl. 21, 401–418 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hess, C.: On multivalued martingales whose values be unbounded: martingale selectors and Mosco convergence. J. Multivariate Anal. 39, 175–201 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7, 149–182 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  12. de Korvin, A., Kleyle, R.: A convergence theorem for convex set valued supermartingales. Stoch. Anal. Appl. 3, 433–445 (1985)

    Article  MATH  Google Scholar 

  13. Karatzas, I.: Lectures on the mathematics of finance. American Mathematical Society, Providence (1997)

    Google Scholar 

  14. Kim, B.K., Kim, J.H.: Stochastic integrals of set-valued processes and fuzzy processes. J. Math. Anal. Appl. 236, 480–502 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kisielewicz, M.: Set valued stochastic integrals and stochastic inclusions. Discuss. Math. 13, 119–126 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Kisielewicz, M.: Set-valued stochastic integrals and stochastic inclusions. Stoch. Anal. Appl. 15, 783–800 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kisielewicz, M.: Weak compactness of solution sets to stochastic differential inclusions with non-convex right-hand sides. Stoch. Anal. Appl. 23, 871–901 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kisielewicz, M., Michta, M., Motyl, J.: Set valued approach to stochastic control, part I: existence and regularity properties. Dynam. Systems Appl. 12, 405–432 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Kisielewicz, M., Michta, M., Motyl, J.: Set valued approach to stochastic control, part II: viability and semimartingale issues. Dynam. Systems Appl. 12, 433–466 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Li, J., Li, S.: Set-valued stochastic Lebesgue integral and representation theorems. Int. J. Comput. Intell. Syst. 1, 177–187 (2008)

    Google Scholar 

  21. Li, J., Li, S., Ogura, Y.: Strong solution of Itô type set-valued stochastic differential equation. Acta Math. Sinica (to appear, 2010)

    Google Scholar 

  22. Li, S., Li, J., Li, X.: Stochastic integral with respect to set-valued square integrable martingales. J. Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.04.040

    Google Scholar 

  23. Li, S., Ogura, Y.: Convergence of set valued sub- and super-martingales in the Kuratowski-Mosco sense. Ann. Probab. 26, 1384–1402 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, S., Ogura, Y.: Convergence of set valued and fuzzy valued martingales. Fuzzy Sets Syst. 101, 453–461 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, S., Ogura, Y.: A convergence theorem of fuzzy-valued martingales in the extended Hausdorff metric H  ∞ . Fuzzy Sets Syst. 135, 391–399 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, S., Ogura, Y., Kreinovich, V.: Limit theorems and applications of set-valuded and fuzzy sets-valued random variables. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  27. Li, S., Ren, A.: Representation theorems, set-valued and fuzzy set-valued Itô intergal. Fuzzy Sets Syst. 158, 949–962 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Luu, D.Q.: Representations and regularity of multivalued martingales. Acta Math. Vietnam. 6, 29–40 (1981)

    MATH  MathSciNet  Google Scholar 

  29. Luu, D.Q.: Applications of set-valued Radon-Nikodym theorms to convergence of multivalued L 1-amarts. Math. Scand. 54, 101–114 (1984)

    MATH  MathSciNet  Google Scholar 

  30. Molchanov, I.: Theory of Random Sets. Springer, London (2005)

    MATH  Google Scholar 

  31. Oksendal, B.: Stochastic Differential Equations. Springer, London (1995)

    Google Scholar 

  32. Papageorgiou, N.S.: On the theory of Banach space valued multifunctions. 1. integration and conditional expectation. J. Multivariate Anal. 17, 185–206 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  33. Papageorgiou, N.S.: A convergence theorem for set valued multifunctions. 2. set valued martingales and set valued measures. J. Multivariate Anal. 17, 207–227 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Papageorgiou, N.S.: On the conditional expectation and convergence properties of random sets. Trans. Amer. Math. Soc. 347, 2495–2515 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Qi, Y., Wang, R.: Set-valued stochastic integral of bounded predictable processes w.r.t. square integrable martingale. Comm. Appl. Math. Comput. 2, 77–81 (1998)

    Google Scholar 

  36. Shreve, S.E.: Stochastic Calculus for Finance. Springer, London (2004)

    Google Scholar 

  37. Wang, Z.P., Xue, X.: On convergence and closedness of multivalued martingales. Trans. Amer. Math. Soc. 341, 807–827 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhang, J., Li, S., Mitoma, I., Okazaki, Y.: On set-valued stochastic integrals in an M-type 2 Banach space. J. Math. Anal. Appl. 350, 216–233 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhang, J., Li, S., Mitoma, I., Okazaki, Y.: On the solution of set-valued stochastic differential equation in M-type 2 Banach space. Tohoku Math. J. 61, 417–440 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, W., Gao, Y.: A convergence theorem and Riesz decomposition for set valued supermartingales. Acta Math. Sinica 35, 112–120 (1992)

    MATH  MathSciNet  Google Scholar 

  41. Zhang, W., Li, S., Wang, Z., Gao, Y.: An introduction of set-valued stochastic processes. Science Press, Beijing (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S. (2010). Set-Valued Square Integrable Martingales and Stochastic Integral. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14746-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14745-6

  • Online ISBN: 978-3-642-14746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics