Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 77))

Abstract

Machine learning, and more specifically regression, usually focuses on the search for a precise model, when precise data are available. It is well-known that the model thus found may not exactly describe the target concept, due to the existence of learning bias. In order to overcome the problem of learning models having an illusory precision, a so-called imprecise regression method has been recently proposed for non-fuzzy data. The goal of imprecise regression is to find a model that offers a good trade-off between faithfulness w.r.t. data and (meaningful) precision. In this paper, we propose an improved version of the initial approach. The interest of such an approach with respect to classical regression is discussed in the perspective of coping with learning bias. This approach is also contrasted with other fuzzy regression approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisserier, A., Boukezzoula, R., Galichet, S.: An interval approach for fuzzy linear regression with imprecise data. In: Proceedings of the IFSA/EUSFLAT 2009 Conference, IFSA/EUSFLAT 2009, Lisbon, Portugal, pp. 1305–1310 (2009)

    Google Scholar 

  2. Buckley, J., Feuring, T.: Linear and non-linear fuzzy regression: Evolutionary algorithm solutions. Fuzzy Sets Syst. 112, 381–394 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Celmins, A.: Least squares model fitting to fuzzy vector data. Fuzzy Sets Syst. 22(3), 245–269 (1987)

    Article  MathSciNet  Google Scholar 

  4. Diamond, P.: Fuzzy least squares. Inform. Sci. 46(3), 141–157 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dubois, D., Prade, H.: Possibility theory, pp. 125–126. Plenum Press, New York (1988)

    MATH  Google Scholar 

  6. Dubois, D., Prade, H.: When upper probabilities are possibility measures. Fuzzy Sets Syst. 49, 65–74 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dunyak, J.P., Wünsche, D.: Fuzzy regression by fuzzy number neural networks. Fuzzy Sets Syst. 112(3), 371–380 (2000), doi:10.1016/S0165-0114(97)00393-X

    Article  MATH  Google Scholar 

  8. D’Urso, P.: An “orderwise” polynomial regression procedure for fuzzy data. Fuzzy Sets Syst. 130, 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. D’Urso, P.: Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Comput. Stat. Data Anal. 42(1-2), 47–72 (2003), doi:10.1016/S0167-9473(02)00117-2

    Article  MATH  MathSciNet  Google Scholar 

  10. Fitts, P.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)

    Article  Google Scholar 

  11. González-Rodríguez, G., Blanco, A., Colubi, A., Lubiano, M.A.: Estimation of a simple linear regression model for fuzzy random variables. Fuzzy Sets Syst. 160, 357–370 (2009)

    Article  MATH  Google Scholar 

  12. Hong, D.H., Hwang, C.: Support vector fuzzy regression machines. Fuzzy Sets and Systems 138(2), 271–281 (2003), doi:10.1016/S0165-0114(02)00514-6

    Article  MATH  MathSciNet  Google Scholar 

  13. Ishibuchi, H., Nii, M.: Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks. Fuzzy Sets Syst. 119(2), 273–290 (2001), doi:10.1016/S0165-0114(98)00370-4

    Article  MATH  MathSciNet  Google Scholar 

  14. Ishibuchi, H., Tanaka, H.: Fuzzy regression analysis using neural networks. Fuzzy Sets Syst. 50, 57–65 (1992)

    Article  MathSciNet  Google Scholar 

  15. Jenga, J.T., Chuang, C.C., Su, S.F.: Support vector interval regression networks for interval regression analysis. Fuzzy Sets Syst. 138(2), 283–300 (2003)

    Article  Google Scholar 

  16. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  17. Modarres, M., Nasrabadi, E., Nasrabadi, M.M.: Fuzzy linear regression models with least square errors. Appl. Math. Comput. 15, 873–881 (2003)

    Google Scholar 

  18. Näther, W.: Regression with fuzzy random data. Comput. Stat. Data Anal. 51, 235–252 (2006)

    Article  MATH  Google Scholar 

  19. Serrurier, M., Prade, H.: A general framework for imprecise regression. In: Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2007, London, UK, pp. 1597–1602 (2007)

    Google Scholar 

  20. Tanaka, H.: Fuzzy data analysis by possibilistic linear models. Fuzzy Sets Syst. 24(3), 363–376 (1987)

    Article  MATH  Google Scholar 

  21. Tanaka, H., Guo, P.: Possibilistic data analysis for operations research. Physica-Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  22. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  23. Xu, S.Q., Luo, Q.Y., Xu, G.H., Zhang, L.: Asymmetrical interval regression using extended epsilon-SVM with robust algorithm. Fuzzy Sets Syst. 160(7), 988–1002 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prade, H., Serrurier, M. (2010). Why Imprecise Regression: A Discussion. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14746-3_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14745-6

  • Online ISBN: 978-3-642-14746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics