Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 77))

  • 1637 Accesses

Abstract

We deal with the problem of computing efficiently the closure of a set of independencies, compatible with a coherent conditional probability, under cs–independence. For this aim we provide two inferential rules, which allow to build a basis for the closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baioletti, M., Busanello, G., Vantaggi, B.: Conditional independence structure and its closure: Inferential rules and algorithms. Internat. J. Approx. Reason. 50, 1097–1114 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coletti, G., Scozzafava, R.: Zero probabilities in stochastical independence. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) Information, Uncertainty, Fusion, pp. 185–196. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  3. Coletti, G., Scozzafava, R.: Probabilistic logic in a coherent setting. Trends in logic, vol. 15. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  4. Coletti, G., Vantaggi, B.: Possibility theory: conditional independence. Fuzzy Sets Syst. 157, 1491–1513 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cozman, F.G., Seidenfeld, T.: Independence for full conditional measures, graphoids and Bayesian networks. Bol. BT/PMR/0711 Escola Pol. da Universidade de Sao Paulo, Sao Paulo, Brazil (2007)

    Google Scholar 

  6. Dawid, A.P.: Conditional independence in statistical theory. J. Roy. Stat. Soc. Ser. B 41, 15–31 (1979)

    Google Scholar 

  7. Studený, M.: Semigraphoids and structures of probabilistic conditional independence. Ann. Math. Artif. Intell. 21, 71–98 (1997)

    Article  MATH  Google Scholar 

  8. Studený, M.: Complexity of structural models. In: Proceedings of Prague Stochastics 1998, pp. 521–528. Union of Czech Mathematicians and Physicists, Prague (1998)

    Google Scholar 

  9. Vantaggi, B.: Conditional independence in a coherent setting. Ann. Math. Artif. Intell. 32, 287–313 (2001)

    Article  MathSciNet  Google Scholar 

  10. Vantaggi, B.: Conditional independence structures and graphical models. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 11(5), 545–571 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Busanello, G., Vantaggi, B. (2010). Inferential Rules for Weak Graphoid. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14746-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14745-6

  • Online ISBN: 978-3-642-14746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics