Skip to main content

Using Machine Translation Systems to Expand a Corpus in Textual Entailment

  • Conference paper
Advances in Natural Language Processing (NLP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6233))

Included in the following conference series:

  • 1237 Accesses

Abstract

This paper explores how to increase the size of Textual Entailment Corpus by using Machine Translation systems to generate additional 〈t,h 〉 pairs. We also analyze the theoretical upper bound of a Corpus expanded by machine translation systems, and propose how it computes the confidence of a classification translator-based RTE system. At the end, we show an algorithm to expand the corpus size using Translator engines and we provide some results over a real RTE system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marneffe, M., MacCartney, B., Grenager, T., Cer, D., Rafferty, A., Manning, C.: Learning to distinguish valid textual entailments. In: RTE2 Challenge, Italy (2006)

    Google Scholar 

  2. Zanzotto, F., Pennacchiotti, M., Moschitti, A.: Shallow Semantics in Fast Textual Entailment Rule Learners. In: RTE3, Prague (2007)

    Google Scholar 

  3. Castillo, J.: Recognizing Textual Entailment: Experiments with Machine Learning Algorithms and RTE Corpora. In: Cicling 2010, Iaşi, Romania (2009)

    Google Scholar 

  4. Inkpen, D., Kipp, D., Nastase, V.: Machine Learning Experiments for Textual Entailment. In: RTE2 Challenge, Venice, Italy (2006)

    Google Scholar 

  5. Newman, E., Stokes, N., Dunnion, J., Carthy, J.: UCD IIRG Approach to the Textual Entailment Challenge. In: PASCAL. Proc. of the First Challenge Workshop. Recognizing Textual Entailment (2005)

    Google Scholar 

  6. Agichtein, E., Askew, W., Liu, Y.: Combining Lexical, Syntactic, and Semantic Evidence for Textual Entailment Classification. In: TAC 2008, Gaithersburg, Maryland, USA (2008)

    Google Scholar 

  7. Bentivogli, L., Dagan, I., Dang, H., Giampiccolo, D., Magnini, B.: The Fifth PASCAL Recognizing Textual Entailment Challenge. In: Proceedings of Textual Analysis Conference, NIST, Maryland, USA (2009)

    Google Scholar 

  8. Dolan, B., Quirk, C., Brockett, C.: Unsupervised construction of large paraphrase corpora: exploiting massively parallel news sources. In: COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, p. 350 (2004)

    Google Scholar 

  9. Castillo, J.: A Machine Learning Approach for Recognizing Textual Entailment of the Spanish. In: North American Chapter of ACL (2010)

    Google Scholar 

  10. Vanderwende, L., Dolan, W.B.: What syntax can contribute in entailment task. Springer, Heidelberg (2006)

    Google Scholar 

  11. Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment: Rational, evaluation and approaches. Natural Language Engineering 15(4), i–xvii (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castillo, J.J. (2010). Using Machine Translation Systems to Expand a Corpus in Textual Entailment. In: Loftsson, H., Rögnvaldsson, E., Helgadóttir, S. (eds) Advances in Natural Language Processing. NLP 2010. Lecture Notes in Computer Science(), vol 6233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14770-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14770-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14769-2

  • Online ISBN: 978-3-642-14770-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics