Skip to main content

An Efficient Pairwise Kurtosis Optimization Algorithm for Independent Component Analysis

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 93))

Included in the following conference series:

  • 1472 Accesses

Abstract

In the framework of Independent Component Analysis (ICA), kurtosis has been used widely in designing source separation algorithms. In fact, the sum of absolute kurtosis values of all the output components is an effective objective function for separating arbitrary sources. In this paper, we propose an efficient ICA algorithm via a modified Jacobi optimization procedure on the kurtosis-sum objective function. The optimal rotation angle for any pair of the output components can be solved directly. It is demonstrated by numerical simulation experiments that our proposed algorithm can be even more computationally efficient than the FastICA algorithm under the same separation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cardoso, J.F.: Blind Signal Separation: Statistical Principles. Proceedings of the IEEE 86, 2009–2025 (1998)

    Article  Google Scholar 

  2. Comon, P.: Independent Component Analysis – a New Concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Bell, A., Sejnowski, T.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  4. Amari, S.I., Cichocki, A., Yang, H.: A New Learning Algorithm for Blind Separation of Sources. Advances in Neural Information Processing 8, 757–763 (1996)

    Google Scholar 

  5. Cardoso, J.F.: High-order contrasts for Independent Component Analysis. Neural Computation 11, 157–192 (1999)

    Article  Google Scholar 

  6. Delfosse, N., Loubaton, P.: Adaptive Blind Separation of Independent Sources: a Deflation Approach. Signal Processing 45, 59–83 (1995)

    Article  MATH  Google Scholar 

  7. Ge, F., Ma, J.: Analysis of the Kurtosis-Sum Objective Function for ICA. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds.) ISNN 2008, Part I. LNCS, vol. 5263, pp. 579–588. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Moreau, E., Macchi, O.: High-order Contrast for Self-adaptive Source Separation. International Journal of Adaptive Control and Signal Processing 10, 19–46 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hyvärinen, A.: Fast and Robust Fixed-point Algorithms for Independent Component Analysis. IEEE Trans. Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  10. Zarzoso, V., Nandi, A.K.: Blind Separation of Independent Sources for Virtually any Source Probability Density Function. IEEE Trans. Signal Processing 47, 2419–2432 (1999)

    Article  Google Scholar 

  11. Zarzoso, V., Nandi, A.K., Herrmann, F., Millet-Roig, J.: Combined Estimation Scheme for Blind Source Separation with Arbitary Source PDFs. Electronic Letters 37, 132–133 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ge, F., Ma, J. (2010). An Efficient Pairwise Kurtosis Optimization Algorithm for Independent Component Analysis. In: Huang, DS., McGinnity, M., Heutte, L., Zhang, XP. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Communications in Computer and Information Science, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14831-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14831-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14830-9

  • Online ISBN: 978-3-642-14831-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics