Skip to main content

Modeling for Evaluation of Significant Features in siRNA Design

  • Conference paper
Contemporary Computing (IC3 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 94))

Included in the following conference series:

  • 1126 Accesses

Abstract

RNAi is the most conserved phenomenon occurring in eukaryotes, where it controls the developmental process through gene regulation. Recently, exogenously generated siRNA mediated RNAi has drawn greater significance in functional genomics and therapeutic applications like cancer, HIV and neurodegenerative diseases specially in mammalian system. Computational designing of efficient sequence specific siRNAs against the gene of interest deploy many guidelines, which are based upon sequence to thermodynamic features as a pivotal determinants of effective siRNA sequences, but identification of optimal features needed for efficient designing are yet to be deciphered in the assurance of better efficacy. Till date many computational tools are available, but no tool provide the accurate gene specific siRNA sequences with absolute efficacy therefore study of suitable features of siRNA design is very smoldering issue to be solved in the present scenario. In the present work, we have applied ant colony optimization technique to indentify the features of siRNA up to considerable amount of accuracy and further the results are modeled using four independent models such as linear regression, ANCOVA, libSVM and liblinear with the conclusion that linear features are preferentially superior then thermodynamic features while both group of features are important in the efficacy prediction of siRNA. The results are highly coherence with prior investigations and highlight the importance of sequential features in effective siRNA design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fire, A., Xu, S., Montgomery, M., Kostas, S., Driver, S., Mello, C.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669), 806–811 (1998)

    Article  Google Scholar 

  2. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., Tuschl, T.: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836), 428–498 (2001)

    Article  Google Scholar 

  3. Kim, S.H., Jeong, J.H., Cho, K.C., Kim, S.W., Park, T.G.: Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly (ethylenimine). Journal of Controlled Release 104, 223–232 (2005)

    Article  Google Scholar 

  4. Surabhi, R.M., Gaynor, R.B.: RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. J. Virol. 76(24), 12963–12973 (2002)

    Article  Google Scholar 

  5. Pai, S.I., Lin, Y.Y., Macaes, B., Meneshian, A., Hung, C.F., Wu, T.C.: Prospects of RNA interference therapy for cancer. Gene. Ther. 13(6), 464–477 (2006)

    Article  Google Scholar 

  6. Tuschl, T., Zamore, P., Lehmann, R., Bartel, D., Sharp, P.: Targeted mRNA degradation by double-stranded RNA in vitro. Genes. Dev. 13(24), 3191–3197 (1999)

    Google Scholar 

  7. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., Khvorova, A.: Rational siRNA design for RNA interference. Nat. Biotechnol. 22(3), 326–330 (2004)

    Article  Google Scholar 

  8. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R., Saigo, K.: Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32(3), 936–948 (2004)

    Article  Google Scholar 

  9. Amarzguioui, M., Prydz, H.: An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316(4), 1050–1058 (2004)

    Article  Google Scholar 

  10. Saetrom, P., Snove, O.: A comparison of siRNA efficacy predictors. Biochem. Biophys. Res. Commun. 321(1), 247–253 (2004)

    Article  Google Scholar 

  11. Chalk, A.M., Wahlestedt, C., Sonnhammer, E.L.: Improved and automated prediction of effective siRNA. Biochem. Biophys. Res. Commun. 319(1), 264–274 (2004)

    Article  Google Scholar 

  12. Gong, W., Ren, Y., Xu, Q., Wang, Y., Lin, D., Zhou, H., Li, T.: Integrated siRNA design based on surveying of features associated with high RNAi effectiveness. BMC Bioinformatics 7, 516 (2006)

    Article  Google Scholar 

  13. He, M.: Feature Selection Based on Ant Colony Optimization and Rough Set Theory. In: International Symposium on Computer Science and Computational Technology (ISCSCT), vol. 1, pp. 247–250 (2008)

    Google Scholar 

  14. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part B 26(1), 29–42 (1996)

    Article  Google Scholar 

  15. Jain, C.K., Prasad, Y.: Feature selection for siRNA efficacy prediction using natural computation. In: World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 1759–1764. IEEE Press, Los Alamitos (2009)

    Chapter  Google Scholar 

  16. Huesken, D., Lange, J., Mickanin, C., Weiler, J., Asselbergs, F., Warner, J., Meloon, B., Engel, S., Rosenberg, A., Cohen, D., Labow, M., Reinhardt, M., Natt, F., Hall, J.: Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005)

    Article  Google Scholar 

  17. Matveeva, O., Nechipurenko, Y., Rossi, L., Moore, B., Sætrom, P., Ogurtsov, A.Y., Atkins, J.F., Shabalina, S.A.: Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 35, e63 (2007)

    Article  Google Scholar 

  18. Vert, J.P., Foveau, N., Lajaunie, C., Vandenbrouck, Y.: An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinform. 7, 520 (2006)

    Article  Google Scholar 

  19. Zhou, D., He, Y., Kwoh, C., Wang, H.: Ant MST:An Ant-Based Minimum Spanning Tree for Gene Expression Data Clustering. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 198–205. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Lee, M., Kim, Y., Kim, Y., Lee, Y.K., Yoon, H.: An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data. International Journal of Computational Intelligence 4(2) (Spring 2008)

    Google Scholar 

  21. He, Y., Hui, S.C., Sim, Y.: A Novel Ant-Based Clustering Approach for Document Clustering. In: Asia Information Retrieval Symposium, Singapore, pp. 537–544 (2006)

    Google Scholar 

  22. Everitt, B.S.: The Cambridge Dictionary of Statistics. CUP, Cambridge (2002), ISBN 0-521-81099-x

    MATH  Google Scholar 

  23. Ichihara, M., Murakumo, Y., Masuda, A., Matsuura, T., Asai, N., Jijiwa, M., Ishida, M., Shinmi, J., Yatsuya, H., Qiao, S., Takahashi, M., Ohno, K.: Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Research 35(18), e123 (2007)

    Article  Google Scholar 

  24. http://www.xlstat.com/en/download/?file=xlstat2009.exe (May 3, 2009)

  25. http://www.statsoft.com/textbook/stbasic.html (June 14, 2009)

  26. Mardia, K.V., Kent, J.T., Bibly, J.M.: Multivariate Analysis. Academic Press, London (1979), ISBN 0-12-471252-5

    MATH  Google Scholar 

  27. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: Statistical Parametric Maps in Functional imaging: A general linear approach. Human Brain Mapping 2, 189–210 (1995)

    Article  Google Scholar 

  28. Liu, Q., Irina, D., Adewale Adeniyi, J., Potter John, D., Yutaka, Y.: Comparative evaluation of gene-set analysis methods. BMC Bioinformatics 8, 431 (2007)

    Article  Google Scholar 

  29. Chan, S.H., Chen, L.J., Chow, N.H., Liu, H.S.: An ancova approach to normalize microarray data, and its performance to existing methods. Journal of Bioinformatics and Computational Biology 3(2), 257–268 (2005)

    Article  Google Scholar 

  30. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)

    Chapter  Google Scholar 

  31. Drucker, H., Burges Chris, J.C., Kaufman, L., Smola, A., Vapnik, V.: Support Vector Regression Machines. In: Advances in Neural Information Processing Systems, NIPS 1996, vol. 9, pp. 155–161 (1997)

    Google Scholar 

  32. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20 (1995), http://www.springerlink.com/content/k238jx04hm87j80g/

  33. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  34. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos, primal estimated sub-gradient solver for SVM. In: Proceedings of the 24th International Conference on Machine Learning, pp. 807–814 (2007)

    Google Scholar 

  35. Joachims, T.: Training Linear SVMs in Linear Time. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining, KDD (2006)

    Google Scholar 

  36. Lu, Z.H., Mathews, D.H.: OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Research 36(Suppl. 2), 104–108 (2008)

    Article  Google Scholar 

  37. Poliseno, L., Evangelista, M., Mercatanti, A., Mariani, L., Citti, L., Rainaldi, G.: The energy profiling of short interfering RNAs is highly predictive of their activity. Oligonucleotides 14, 227–232 (2004)

    Article  Google Scholar 

  38. Khvorova, A., Reynolds, A., Jayasena, S.D.: Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003)

    Article  Google Scholar 

  39. Wang, X., Wang, X., Verma, R.K., Beauchamp, L., Magdaleno, S., Sendera, T.J.: Selection of hyperfunctional siRNAs with improved potency and specificity. Nucleic acid Research 37(22), e152 (2009)

    Article  Google Scholar 

  40. Basiri, M.E., Ghasem-Aghaee, N., Aghadam, M.H.: Using Ant Colony optimization based selected features for predicting post synaptic activity in proteins. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 12–23. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  41. Nemati, S., Basiri, M.E., Aghadam, N.G., Aghadam, M.H.: A novel ACO-GA hybrid algorithm for feature selection in protein function prediction. Expert System With Applications 36, 12086–12094 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, C.K., Prasad, Y. (2010). Modeling for Evaluation of Significant Features in siRNA Design. In: Ranka, S., et al. Contemporary Computing. IC3 2010. Communications in Computer and Information Science, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14834-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14834-7_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14833-0

  • Online ISBN: 978-3-642-14834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics