Skip to main content

Coordination Problems in Ad Hoc Radio Networks

  • Chapter
  • First Online:
Theoretical Aspects of Distributed Computing in Sensor Networks

Abstract

In this chapter we consider coordination problems in the model of wireless communication called ad hoc radio network. This model evolved from a multiple-access channel, which was introduced as a communication model for single-hop LANs, such as Ethernet. In radio networks, communication is assumed to be in (synchronous) slots, and an interference of two or more transmission signals received by a node results in a failure of delivering any of the colliding messages to this node. In ad hoc setting nodes are not aware, or have very limited knowledge, of the topology of the system, including the underlying network or distribution of active stations. Moreover, their local clocks may often show different readings. We consider several coordination problems in the context of ad hoc radio networks with no a priori given clock synchronization, such as waking up of sleeping nodes, unifying local clock settings, electing a leader, and mutual exclusion. We present the state of the art in these areas and suggest a few perspective research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here by “admissible row shift” we mean a specified class of row shifts; in this sense, the actual definition of a synchronizer depends on a class of row shifts that we allow in the definition; more details and a few examples of different classes of synchronizers can be found in Sect. 11.2.1.

  2. 2.

    Adversarial Queuing Theory (AQT) was introduced by Borodin et al. [10] in the context of store-and-forward networks.

  3. 3.

    In case of strong synchronization, e.g., for two-way synchronizers, σ may be subject to slightly different constraints.

References

  1. N. Abramson. Development of the alohanet, IEEE Transactions on Information Theory 31:119–123, (1985).

    Article  MATH  Google Scholar 

  2. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast, Journal of Computer and System Sciences 43:290–298, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Alonso, E. Kranakis, C. Sawchuk, R. Wattenhofer, and P. Widmayer. Randomized protocols for node discovery in ad-hoc multichannel broadcast networks, In: Proceedings, 2nd Annual Conference on Adhoc Networks and Wireless (ADHOCNOW), volume 2865 of Lecture Notes in Computer Science. Springer, pages 104–115, 2003.

    Google Scholar 

  4. H. Attiya and J. Welch. Distributed Computing, Wiley, 2004.

    Google Scholar 

  5. E. Bach and J. Shallit. Algorithmic Number Theory, Volume I, The MIT Press, Cambridge, MA, 1996.

    MATH  Google Scholar 

  6. R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time complexity of broadcast in radio networks: An exponential gap between determinism and randomization, Journal of Computer and System Sciences, 45:104–126, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple communication in multihop radio networks, SIAM Journal on Computing, 22:875–887, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.A. Bender, M. Farach-Colton, S. He, B.C. Kuszmaul, and C.E. Leiserson. Adversarial contention resolution for simple channels, In: Proceedings, 17th Annual ACM Symposium on Parallel Algorithms (SPAA), pages 325–332, 2005.

    Google Scholar 

  9. M. Bienkowski, M. Klonowski, M. Korzeniowski, and D.R. Kowalski. Dynamic sharing of a multiple access channel, In: Proceedings, 27th International Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs 5 Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pages 83–94, to appear, 2010.

    Google Scholar 

  10. A. Borodin, J.M. Kleinberg, P. Raghavan, M. Sudan, and D.P. Williamson. Adversarial queuing theory, Journal of the ACM, 48:13–38, 2001.

    Article  MathSciNet  Google Scholar 

  11. J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory, 25:505–515, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Chlamtac and S. Kutten. On broadcasting in radio networks - problem analysis and protocol design, IEEE Transactions on Communications, 33:1240–1246, 1985.

    Article  MATH  Google Scholar 

  13. B.S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic broadcasting in unknown radio networks, Distributed Computing, 15:27–38, Springer, 2002.

    Article  Google Scholar 

  14. B.S. Chlebus, L. Gasieniec, D. Kowalski, and T. Radzik. On the wake-up problem in radio networks, In: Proceedings, 32nd International Colloquium on Automata, Languages and Programming (ICALP), volume 3580 of Lecture Notes in Computer Science. Springer, Lisbon, Portugal, pages 347–359, 2005.

    Google Scholar 

  15. B.S. Chlebus and D. Kowalski. A better wake-up in radio networks, In: Proceedings, 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages 266–274, 2004.

    Google Scholar 

  16. B.S. Chlebus, D.R. Kowalski, and T. Radzik. Many-to-many communication in radio networks, Algorithmica, 54:118–139, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  17. B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki. Adversarial queuing on the multiple-access channel, In: Proceedings, 25th ACM Symposium on Principles of Distributed Computing (PODC), ACM, Denver, USA, pages 92–101, 2006.

    Google Scholar 

  18. B.S. Chlebus and M.A. Rokicki, Centralized asynchronous broadcast in radio networks, Theoretical Computer Science, 383:5–22, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Chockler, M. Demirbas, S. Gilbert, N.A. Lynch, C.C. Newport, and T. Nolte. Consensus and collision detectors in radio networks, Distributed Computing, 21:55–84, 2008.

    Article  Google Scholar 

  20. M. Chrobak, L. Gasieniec, and D.R. Kowalski. The wake-up problem in multihop radio networks, SIAM Journal on Computing, 36:1453–1471, 2007.

    Article  MATH  Google Scholar 

  21. M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio networks, Journal of Algorithms, 43:177–189, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  22. A.E.F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio networks of unknown topology, Theoretical Computer Science, 302:337–364, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  23. A.E.F. Clementi, A. Monti, and R. Silvestri. Round robin is optimal for fault-tolerant broadcasting on wireless networks, In: Proceedings, 9th Annual European Symposium on Algorithms (ESA), volume 2161 of Lecture Notes in Computer Science. Springer, Aarhus, Denmark, pages 452–463, 2001.

    Google Scholar 

  24. A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with unknown topology, In: Proceedings, 44th IEEE Symposium on Foundations of Computer Science (FOCS), EEE Computer Society, Cambridge, USA, pages 492–501, 2003.

    Google Scholar 

  25. J. Czyzowicz, L. Gasieniec, D.R. Kowalski, and A. Pelc. Consensus and mutual exclusion in a multiple access channel, In: Proceedings, (DISC), volume 5805 of Lecture Notes in Computer Science. Springer, Elche, Spain, pages 512–526, 2009.

    Google Scholar 

  26. S. Dolev, S. Gilbert, R. Guerraoui, F. Kuhn, and C.C. Newport. The wireless synchronization problem, In: Proceedings, (PODC), ACM, Calgary, Canada, pages 190–199, 2009.

    Google Scholar 

  27. S. Dolev, S. Gilbert, R. Guerraoui, and C.C. Newport. Gossiping in a multi-channel radio network, In: Proceedings, (DISC), volume 4731 of Lecture Notes in Computer Science. Springer, Lemesos, Cyprus, pages 208–222, 2007.

    Google Scholar 

  28. M. Farach-Colton and M.A. Mosteiro. Initializing sensor networks of non-uniform density in the Weak Sensor Model, In: Proceedings, 10th International Workshop on Algorithms and Data Structures (WADS), volume 4619 of Lecture Notes in Computer Science. Springer, Halifax, Canada, pages 565–576, 2007.

    Google Scholar 

  29. R.G. Gallager. A perspective on multiaccess channels, IEEE Transactions on Information Theory, 31:124–142, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Gasieniec, A. Pelc, and D. Peleg. The wakeup problem in synchronous broadcast systems, SIAM Journal on Discrete Mathematics, 14:207–222, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  31. A.G. Greenberg and S. Winograd. A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels, Journal of ACM 32:589–596, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Gilbert, R. Guerraoui, and C.C. Newport. Of malicious motes and suspicious sensors: On the efficiency of malicious interference in wireless networks, Theoretical Computer Science, 410:546–569, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  33. O. Goussevskaia, Y.A. Oswald, and R. Wattenhofer. Complexity in geometric SINR, In: Proceedings, (MobiHoc), ACM, Montreal, Canada, pages 100–109, 2007.

    Google Scholar 

  34. J.F. Hayes. An adaptive technique for local distribution, IEEE Transactions on Communications, 26:1178–1186, 1978.

    Article  Google Scholar 

  35. J. Hrastad, T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access channels, SIAM Journal on Computing, 25:740–774, 1996.

    Article  MathSciNet  Google Scholar 

  36. P. Indyk. Explicit constructions of selectors and related combinatorial structures, with applications, In: Proceedings, 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM/SIAM, San Francisco, USA, pages 697–704, 2002.

    Google Scholar 

  37. T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Efficient algorithms for leader election in radio networks, In: Proceedings, 21st Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 51–57, 2002.

    Google Scholar 

  38. T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem in single-hop radio networks, In: Proceedings, 13th International Symposium on Algorithms and Computation (ISAAC), volume 2518 of Lecture Notes in Computer Science. Springer, Vancouver, Canada, pages 535–549, 2002.

    Google Scholar 

  39. W.H. Kautz and R.R.C. Singleton. Nonrandom binary superimposed codes, IEEE Transactions on Information Theory, 10:363–377, 1964.

    Article  MATH  Google Scholar 

  40. C.-Y. Koo, V. Bhandari, J. Katz, and N.H. Vaidya. Reliable broadcast in radio networks: The bounded collision case, In: Proceedings, 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), ACM, Denver, USA, pages 258–264, 2006.

    Google Scholar 

  41. D. Kowalski, On selection problem in radio networks, In: Proceedings, 24th ACM Symposium on Principles of Distributed Computing (PODC), pages 158–166, 2005.

    Google Scholar 

  42. D.R. Kowalski and A. Pelc. Faster deterministic broadcasting in ad hoc radio networks, SIAM Journal on Discrete Mathematics 18:332–346, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  43. D.R. Kowalski and A. Pelc. Deterministic broadcasting time in radio networks of unknown topology, Broadcasting in undirected ad hoc radio networks, Distributed Computing 18:43–57, Springer, 2005.

    Article  Google Scholar 

  44. D.R. Kowalski and A. Pelc. Leader election in ad hoc radio networks: A keen ear helps, In: Proceedings, 32nd International Colloquium on Automata, Languages and Programming (ICALP), volume 5556 of Lecture Notes in Computer Science. Springer, Rhodes, Greece, pages 521–533, 2009.

    Google Scholar 

  45. E. Kushilevitz and Y. Mansour. An \(\varOmega(D \log (N/D))\) lower bound for broadcast in radio networks, SIAM Journal on Computing, 27:702–712, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  46. R.M. Metcalfe and D.R. Boggs. Ethernet: Distributed packet switching for local computer networks, Communications of the ACM, 19:395–404, 1976.

    Article  Google Scholar 

  47. K. Nakano, S. Olariu. Uniform leader election protocols for radio networks, IEEE Transactions on Parallel Distributed Systems, 13:516–526, 2002.

    Article  Google Scholar 

  48. A. Pelc. Activating anonymous ad hoc radio networks, Distributed Computing, 19:361–371, 2007.

    Article  Google Scholar 

  49. A. Pelc and D. Peleg. Feasibility and complexity of broadcasting with random transmission failures, In: Proceedings, 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), ACM, Las Vegas, USA, pages 334–341, 2005.

    Google Scholar 

  50. D. Peleg. Time-efficient broadcasting in radio networks: A review, In: Proceedings, 4th International Conference on Distributed Computing and Internet Technology (ICDCIT), volume 4882 of Lecture Notes in Computer Science. Springer, Bangalore, India, pages 1–18, 2007.

    Google Scholar 

  51. R. Rom and M. Sidi. Multiple Access Protocols: Performance and Analysis, Springer, New York, NY, 1990.

    MATH  Google Scholar 

  52. A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced expanders, and extractors, In: Proceedings, 33rd ACM Symposium on Theory of Computing (STOC), ACM, Heraklion, Crete, Greece, pages 143–152, 2001.

    Google Scholar 

  53. B.S. Tsybakov and V.A. Mikhailov. Free synchronous packet access in a broadcast channel with feedback, Prob Inf Transmission 14:259–280, 1978. (Translated from Russian original in Problemy Peredachi Informatsii, 1977.)

    MathSciNet  Google Scholar 

  54. D.E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel, SIAM Journal on Computing, 15:468–477, 1986.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/G023018/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz R. Kowalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kowalski, D.R. (2011). Coordination Problems in Ad Hoc Radio Networks. In: Nikoletseas, S., Rolim, J. (eds) Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14849-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14849-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14848-4

  • Online ISBN: 978-3-642-14849-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics