Skip to main content

Dense, Concentric, and Non-uniform Multi-hop Sensor Networks

  • Chapter
  • First Online:
Theoretical Aspects of Distributed Computing in Sensor Networks

Abstract

In this chapter, we consider a large-scale sensor network, in a circular field, modeled as concentric coronas centered at a sink node. The tiny wireless sensors, severely limited by battery energy, alternate between sleep and awake periods, whereas the sink is equipped with high transmission power and long battery life. The traffic from sensors to the sink follows multi-hop paths in a many-to-one communication pattern. We consider two fundamental and strictly related problems, the localization and the energy hole problems. We first survey on recent algorithms most extensively studied in the literature and summarize their pros and cons with respect to our assumptions. Then we present our solutions tailored for dense and randomly deployed networks. In our localization protocol, the sensors learn their coarse-grain position with respect to the sink, and hence the sink acts as a reference point for the network algorithms, in particular the routing algorithm. For this role of the sink, the network may incur in a special energy hole problem, known as the sink hole problem. From this perspective, the localization and energy hole problems are strictly related. Our solution for the energy hole problem adopts a non-uniform sensor distribution, compatible with the proposed localization solutions, that adds more sensors to the coronas with heavier traffic. In conclusion, we show that the network model under consideration can solve the localization and energy hole problems by properly tuning some network parameters, such as network density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since the behavior of the sensor does not depend on which awake period it is, ν could be omitted from the algorithm description. Indeed this is required just for the analysis purpose.

  2. 2.

    Recall that \((L,k)\) denotes the greatest common divisor between L and k.

  3. 3.

    Obviously, q is limited to the maximum number of sensors that can be deployed in the reachable area. On the one hand, we will see later that the network can achieve very high energy efficiency even with a small q, e.g., \(q = 2\). On the other hand, the size of a sensor could be insignificant compared with a real field for deployment. Therefore this restriction is not a concern.

Referneces

  1. The sensor network museum project: http:// www.snm.ethz.ch/ main/ homepage

  2. I. Akyildiz, I. Kasimoglu. Wireless sensor and actor networks: Research Challenges 2:351–367, 2004.

    Google Scholar 

  3. I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless sensor networks: A survey. Computer Networks 38(4):393–422, 2002.

    Article  Google Scholar 

  4. B. Alavi, K. Pahlavan. Modeling of the toa-based distance measurement error using uwb indoor radio measurements. IEEE Communications Letters 10(4):275–277, 2006.

    Article  Google Scholar 

  5. J. BachRach, C. Taylor. Localization in sensor networks. In: I. Stojmenovic (ed.) Handbook of sensor networks: Algorithms and Architectures. Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

    Google Scholar 

  6. F. Barsi, A. Bertossi, F. Betti Sorbelli, R. Ciotti, S. Olariu, M. Pinotti. Asynchronous corona training protocols in wireless sensor and actor networks. IEEE Transactions on Parallel and Distributed Systems 20(8): 1216–1230, Los Alamitos, USA, 2009.

    Article  Google Scholar 

  7. F. Barsi, A. Bertossi, C. Lavault, A. Navarra, S. Olariu, M. Pinotti, and V. Ravelomanana. Efficient binary search for training heterogeneous sensor and actor networks. In: Proceedings of the 1st ACM Workshop on Heterogeneous Sensor and Actor Networks (HeterSANET), pages 17–24, 2008.

    Google Scholar 

  8. A. Bertossi, S. Olariu, M. Pinotti. Efficient corona training protocols for sensor networks. Theoretical Computer Science 402(1):2–15, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Betti Sorbelli, R. Ciotti, A. Navarra, M. Pinotti, and V. Ravelomanana. Cooperative training in wireless sensor and actor networks. In: Proceedings of the 6th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), pages 569–583, Canary island, Spain, 2009.

    Google Scholar 

  10. J. Bruck, J. Gao, A. Jiang. Localization and routing in sensor networks by local angle information. In: Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), ACM Press, pages 181–192, Urbana-Champaign, USA, 2005.

    Google Scholar 

  11. N. Bulusu, J. Heidemann, D. Estrin, T. Tran. Self-configuring localization systems: Design and Experimental Evaluation 3(1):24–60, 2004.

    Google Scholar 

  12. N. Burri, P. von Rickenbach, R. Wattenhofer. Dozer: Ultra-low power data gathering in sensor networks. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN), ACM pages 450–459, Cambridge, Massachusetts, USA, 2007.

    Google Scholar 

  13. J. Deng, Y. Han, W. Heinzelman, P. Varshney. Balanced-energy sleep scheduling scheme for high-density cluster-based sensor networks. Computer Communications 28(14):1631–1642, 2005.

    Article  Google Scholar 

  14. G. Di Stefano, F. Graziosi, F. Santucci. Distributed positioning algorithm for ad-hoc networks. In: Proceedings of the IEEE International Workshop on UWB Systems, Virginia, USA, 2003.

    Google Scholar 

  15. G. Di Stefano, A. Petricola. A Distributed aOA based localization algorithm for wireless sensor networks. Journal of Computers 3(4):1–8, 2008.

    Google Scholar 

  16. C. Efthymiou, S. Nikoletseas, J. Rolim. Energy balanced data propagation in wireless sensor networks. Wireless Networks 12(6):691–707, 2006.

    Article  Google Scholar 

  17. A. Giridhar, P. Kumar. Maximizing the functional lifetime of sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN), pages 5–12, 2005.

    Google Scholar 

  18. T. He, C. Huang, B. Blum, J. Stankovic, T. Abdelzaher. Range-free localization schemes for large scale sensor networks. In: Proceedings of the 9th International Conference on Mobile Computing and Networking (MobiCom), pages 81–95, San Diego, USA, 2003.

    Google Scholar 

  19. W. Heinzelman, A. Chandrakasan, H. Balakrishnan. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 1(4):660–670, 2002.

    Article  Google Scholar 

  20. A. Hopper, A. Jones, A. Ward. A new location technique for the active office. IEEE Personal Communications 4(5):42–47, 1997.

    Article  Google Scholar 

  21. A. Jarry, P. Leone, O. Powell, J. Rolim. An optimal data propagation algorithm for maximizing the lifespan of sensor networks. In: Proceedings of the 2nd International Conference on Distributed Computing in Sensor Systems (DCOSS), pages 405–421, San Fancisco, USA, 2006.

    Google Scholar 

  22. K. Langendoen, N. Reijers. Embedded systems handbook: Distributed localization algorithms. CRC Press, Boca Raton, Florida, USA, 2004.

    Google Scholar 

  23. P. Leone, S. Nikoletseas, J. Rolim. Stochastic models and adaptive algorithms for energy balance in sensor networks. Theory of Computing Systems 47(2):433–453, Springer, New York, 2010

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Li, M. Ye, G. Chen, J. Wu. An energy-efficient unequal clustering mechanism for wireless sensor networks. In: Proceedings of the 2nd IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), Washington DC, USA, 2005.

    Google Scholar 

  25. J. Li, P. Mohapatra. An analytical model for the energy hole problem in many-to-one sensor networks. In: Proceedings of the IEEE 62nd Semiannual Vehicular Technology Conference (VTC), pages 2721–2725, Dallas, USA, 2005.

    Google Scholar 

  26. J. Li, P. Mohapatra. Analytical modeling and mitigation techniques for the energy hole problems in sensor networks. Pervasive and Mobile Computing 3(8):233–254, 2007.

    Article  Google Scholar 

  27. J. Lian, K. Naik, G. Agnew. Data capacity improvement of wireless sensor networks using non-uniform sensor distribution. International Journal of Distributed Sensor Networks 2(2): 121–145, 2006.

    Article  Google Scholar 

  28. Y. Liu, H. Ngan, L. Ni. Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In: Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), pages 128–135, Taichung, Taiwan, 2006.

    Google Scholar 

  29. Z. Lotker, A. Navarra. Grid emulation for managing random sensor networks. Ad Hoc Networks 6(6):900–908, 2008.

    Article  Google Scholar 

  30. J. Luo, J. Hubaux. Joint mobility and routing for lifetime elongation in wireless sensor networks. In: Proceedings of the 24th Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages 1735–1746, Miami, USA, 2005.

    Google Scholar 

  31. G. Mao, B. Fidan. (eds.): Localization algorithms and strategies for wireless sensor networks. IGI Global, Hershey, Pennsylvania, USA, 2009.

    Google Scholar 

  32. R. Mudumbai, D. Brown III, U. Madhow, H. Poor. Distributed transmit beamforming: Challenges and recent progressdistributed transmit beamforming: Challenges and recent progress. IEEE Communications Magazine, 2:102–110, 2009.

    Article  Google Scholar 

  33. A. Navarra, M. Pinotti, V. Ravelomanana, F. Betti Sorbelli, R. Ciotti. Cooperative training for high density sensor and actor networks. IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Mission Critical Networking Vol. 28(5), pages 753–763, Piscataway, New Jersey, USA, 2010.

    Google Scholar 

  34. A. Navarra, A. Tofani. Distributed localization strategies for sensor networks. In: Proceedings of the 4th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), pages 1–3, 2007.

    Google Scholar 

  35. D. Niculescu. Positioning in ad-hoc sensor networks 18(4):24–29, 2004.

    MathSciNet  Google Scholar 

  36. D. Niculescu, B. Nath. Ad hoc positioning system (APS) using AoA. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), IEEE Computer Society pages 1734–1743, 2003.

    Google Scholar 

  37. S. Olariu, I. Stojmenovic. Data-centric protocols for wireless sensor networks. In: I. Stojmenovic (ed.): Handbook of Sensor Networks: Algorithms and Architectures, John Wiley & Sons Inc., Hoboken, New Jersey, USA, 2005.

    Google Scholar 

  38. S. Olariu, I. Stojmenovic. Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In: Proceedings of the 25th Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages 1–12, Barcelona, Catalunya, Spain, 2006.

    Google Scholar 

  39. S. Olariu, A. Waada, L. Wilson, M. Eltoweissy. Wireless sensor networks leveraging the virtual infrastructure. Network 18(4):51–56, 2004.

    Google Scholar 

  40. A. Papadopoulos, A. Navarra, J. McCann. VIBE: A Virtual-infrastructure-based energy-efficient framework for routing over scalable wireless sensor networks. In: Proceedings of the 1st international Workshop on Energy in Wireless Sensor Networks (WEWSN), Santirini island, Greece, 2008.

    Google Scholar 

  41. M. Perillo, Z. Cheng, W. Heinzelman. On the problem of unbalanced load distribution in wireless sensor networks. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), pages 74–79, Texas, USA, 2004.

    Google Scholar 

  42. O. Powell, P. Leone, J. Rolim. Energy optimal data propagation in wireless sensor networks. journal of parallel and distributed computing 67(3): 302–317, 2007.

    Article  MATH  Google Scholar 

  43. J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, T. Tuan. Pico-radios for wireless sensor networks: The next challenge in ultra-low power design. In: Proceedings of the IEEE International Solid-State Circuits Conference - Digest of Technical Papers (ISSCC), pages 156–445, Pennsylvania, USA, 2002.

    Google Scholar 

  44. T. Rappaport. Wireless communications: Principles and practice. Prentice-Hall, New Jersey, USA, 1996.

    Google Scholar 

  45. M. Rudafshani, S. Datta. Localization in wireless sensor networks. In: Proceedings of the 6th Localization in Wireless Sensor Networks (IPSN), pages 51–60, 2007.

    Google Scholar 

  46. A. Savvides, L. Girod, D. Estrin. Localization in sensor networks. Wireless sensor networks pages 327–349, 2004.

    Google Scholar 

  47. G. Shi, M. Liao, M. Ma, Y. Shu. Exploiting sink movement for energy-efficient load-balancing in wireless sensor networks. In: Proceeding of the 1st ACM international workshop on Foundations of wireless ad hoc and sensor networking and computing (FOWANC), pages 39–44, New Orleans, USA, 2008.

    Google Scholar 

  48. H. Shiue, G. Yu, J. Sheu. Energy hole healing protocol for surveillance sensor networks. In: Workshop on Wireless, Ad Hoc, and Sensor Networks (2005)

    Google Scholar 

  49. C. Song, J. Cao, M. Liu, Y. Zheng, H. Gong, G. Chen. Mitigating energy holes based on transmission range adjustment in wireless sensor networks. In: Proceedings of the 5th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), pages 1–7, Hong Kong, China, 2008.

    Google Scholar 

  50. S. Soro, W. Heinzelman. Prolonging the lifetime of wireless sensor networks via unequal clustering. In: Proceedings of the 19th International Parallel and Distributed Processing Symposium (IPDPS), Denver, Colorado, USA, 2005.

    Google Scholar 

  51. N. Szabo, R. Tanaka. Residue arithmetic and its applications to computer technology. McGraw-Hill, New York, USA, 1967.

    MATH  Google Scholar 

  52. A. Waada, S. Olariu, L. Wilson, M. Eltoweissy, K. Jones. Training a wireless sensor network. Mobile Networks and Applications 10(1):151–168, 2005.

    Article  Google Scholar 

  53. D. Wang, B. Xie, D. Agrawal. Coverage and lifetime optimization of wireless sensor networks with gaussian distribution. IEEE Transactions on Mobile Computing 7(12):1444–1458, 2008.

    Article  Google Scholar 

  54. W. Wang, V. Srinivasan, K. Chua. Using mobile relays to prolong the lifetime of wireless sensor networks. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking (MobiCom), pages 270–283, Cologne, Germany, 2005.

    Google Scholar 

  55. X. Wu, G. Chen, S. Das. Avoiding energy holes in wireless sensor networks with nonuniform node distribution. IEEE Transactions on Parallel and Distributed Systems 19(5): 710–720, 2008.

    Article  Google Scholar 

  56. Q. Xu, R. Ishak, S. Olariu, S. Salleh. On asynchronous training in sensor networks. In: Proceedings of the 3rd International Conference on Advances in Mobile Multimedia (MoMM), pages 43–50, 2005.

    Google Scholar 

  57. M. Ye, C. Li, G. Chen, J. Wu. EECS: an energy efficient clustering scheme in wireless sensor networks. International Journal of Ad Hoc and Sensor Wireless Networks 3(2–3):99–119, 2007.

    Google Scholar 

  58. J. Yick, B. Mukherjee, D. Ghosal. Wireless sensor network survey. Computer Networks 52(12):2292–?2330, 2008.

    Article  Google Scholar 

  59. O. Younis, S. Fahmy. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Wireless Communications 3(4):660–669, 2004.

    Google Scholar 

  60. Z. Zeng, A. Liu, Z. Chen, X. Wu, J. Long. Improved analysis of energy hole for wireless sensor networks. In: Proceedings of the 1st International Conference on Communications and Mobile Computing (CMC), pages 553–557, 2009.

    Google Scholar 

  61. H. Zhang, H. Shen. Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems 20(10):1526–1539, 2009.

    Article  MathSciNet  Google Scholar 

  62. R. Zhang, Z. Jia, D. Yuan. Analysis of lifetime of large wireless sensor networks based on multiple battery levels. International Journal of Communications, Network and System Sciences 1(2):136–143, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, S.K., Navarra, A., Pinotti, C.M. (2011). Dense, Concentric, and Non-uniform Multi-hop Sensor Networks. In: Nikoletseas, S., Rolim, J. (eds) Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14849-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14849-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14848-4

  • Online ISBN: 978-3-642-14849-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics