Skip to main content

Theoretical Aspects of Graph Models for MANETs

  • Chapter
  • First Online:
Theoretical Aspects of Distributed Computing in Sensor Networks

Abstract

We survey the main theoretical aspects of models for mobile ad hoc networks (MANETs). We present theoretical characterizations of mobile network structural properties, different dynamic graph models of MANETs, and finally we give detailed summaries of a few selected articles. In particular, we focus on articles dealing with connectivity of mobile networks and on articles which show that mobility can be used to propagate information between nodes of the network while at the same time maintaining small transmission distances and thus saving energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that a usual graph with n vertices is said to be dense if it has \(\varTheta(n^2)\) edges.

  2. 2.

    Note that the fact that the expected pause time at waypoints tends to infinity implies that nodes are asymptotically static, i.e., RWP model under this condition degenerates to a static network.

  3. 3.

    Values of \(f_{{\mathrm{RWP}},0}\) in the other regions of the unit square are obtained by symmetry.

References

  1. V. Anand A. Bharathidasas. Sensor Networks: An Overview. Technical Report, Department of Computer Science, University of California at Davis, 2002.

    Google Scholar 

  2. C. Avin and G. Ercal. On the cover time and mixing time of random geometric graphs. Theoretical Computer Science, 380(1-2):2–22, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Peled, J. Hershberger, C. Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D. Metaxas, B. Mirtich, D. Mount, S. Muthukrishnan, D. Pai, E. Sacks, J. Snoeyink, S. Suri, and O. Wolefson. Algorithmic issues in modeling motion. ACM Computing Surveys, 34(4):550–572, 2002.

    Article  Google Scholar 

  4. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. Computer Networks, 38:393–422, 2002.

    Article  Google Scholar 

  5. A. Boukerche and L. Bononi. Simulation and modeling of wireless, mobile, and ad hoc networks. In S. Basagni, M. Conti, S. Giordano, and I. Stojmenović, editors, Mobile Ad Hoc Networking, chapter 14, pages 373–409. IEEE Press, New York, NY, 2004.

    Google Scholar 

  6. C. Bettstetter. Mobility modeling in wireless networks: categorization, smooth movement, and border effects. Mobile Computing and Communications Review, 5(3):55–66, 2001.

    Article  Google Scholar 

  7. C. Bettstetter. Smooth is better than sharp: a random mobility model for simulation of wireless networks. In Proceedings of the 4th ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 19–27, ACM, New York, 2001.

    Google Scholar 

  8. H. Breu and D. G. Kirkpatrick. Unit graph recognition is NP-hard. Computational Geometry, 9:3–24, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Bettstetter, G. Resta, and P. Santi. The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(3):257–269, 2003.

    Article  Google Scholar 

  10. T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5):483–502, 2002.

    Article  Google Scholar 

  11. Y. A. Chau and Y.-H. Chen. Analytical link lifetime of a manet based on the three-dimensional brownian mobility model. In Proceedings of the International Symposium on intelligent Signal Processing and Communication Systems, (ISPACS), pages 428–431, IEEE Computer Society, Los Alamitos, CA, 2007.

    Google Scholar 

  12. B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics, 86:165–177, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. E. F. Clementi, F. Pasquale, and R. Silvestri. Manets: High mobility can make up for low transmission power. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. E. Nikoletseas, and W. Thomas, editors, Proceedings of 36th International Collogquium on Automata, Languages and Programming, pages 387–398, 2009.

    Google Scholar 

  14. C. de Morais Cordero and D. P. Agrawal. Ad Hoc and Sensor Networks. World Scientific, New Jersey, 2006.

    Google Scholar 

  15. J. Díaz, D. Mitsche, and X. Pérez. Connectivity for dynamic random geometric graphs. IEEE Transactions on Mobile Computing, 8:821–835, 2009.

    Article  Google Scholar 

  16. J. Díaz, D. Mitsche, and X. Pérez. On the probability of existence of mid-size components in random geometric graphs. Advances of Applied Probability, 41:1–14, 2009.

    Article  Google Scholar 

  17. J. Díaz, J. Petit, and M. J. Serna. A random graph model for optical networks of sensors. IEEE Transactions on Mobile Computing, 2:143–154, 2003.

    Article  Google Scholar 

  18. J. Díaz, X. Pérez, M. J. Serna, and N. Wormald. On the walkers problem. SIAM Journal of Discrete Mathematics, 22:747–775, 2008.

    Article  MATH  Google Scholar 

  19. S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-stabilizing group communication in ad hoc networks. IEEE Trans. Mobile Computing, 5(7):893–905, 2006.

    Article  Google Scholar 

  20. L. J. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic connectivity for unit disks. Discrete & Computational Geometry, 25:591–610, 2001.

    MATH  MathSciNet  Google Scholar 

  21. E. N. Gilbert. Random plane networks. Journal of the Society for Industrial and Applied Mathematics, 9:533–543, 1961.

    Article  MATH  Google Scholar 

  22. P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless networks. In W. McEneaney, G. G. Yin, and Q. Zhang, editors, Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming, pages 547–566. Birkhäuser, 1998.

    Google Scholar 

  23. P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory, 46:388–404, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, NY, 1980.

    MATH  Google Scholar 

  25. A. Goel, S. Rai, and B. Krishnamachari. Sharp thresholds for monotone properties in random geometric graphs. Annals of Applied Probability, 15:364–370, 2005.

    MathSciNet  Google Scholar 

  26. G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press, 2001.

    Google Scholar 

  27. M. Grossglauser and D. N. C. Tse. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4):477–486, 2002.

    Article  Google Scholar 

  28. R. A. Guerin. Channel occupancy time distribution in a cellular radio system. IEEE Transactions on Vehicular Technology, 36(3):89–99, 1987.

    Article  Google Scholar 

  29. S. Guo and O. W. W. Yang. Energy-aware multicasting in wireless ad hoc networks: A survey and discussion. Computer Communications, 30:2129–2148, 2007.

    Article  Google Scholar 

  30. P. G. Hall. Introduction to the Theory of Coverage Processes. Wiley, New York, NY, 1988.

    MATH  Google Scholar 

  31. R. Hekmat. Ad-hoc Networks: Fundamental Properties and Network Topologies. Springer, Heidelberg, 2006.

    Google Scholar 

  32. X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A group mobility model for ad hoc wireless networks. In Proceedings of the 2nd ACM international workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pages 53–60, ACM, New York, NY, 1999.

    Google Scholar 

  33. E. Hyytiä, P. Lassila, and J. Virtamo. Spatial node distribution of the random waypoint mobility model with applications. IEEE Transactions on Mobile Computing, 5(6):680–694, 2006.

    Article  Google Scholar 

  34. M. Hollick, I. Martinovic, T. Krop, and I. Rimac. A survey on dependable routing in sensor networks, ad hoc networks, and cellular networks. In EUROMICRO Conference, pages 495–502, Los Alamitos, CA, 2004. IEEE Computer Society.

    Google Scholar 

  35. Z. J. Haas and M. R. Pearlman. The performance of query control schemes for the zone routing protocol. IEEE/ACM Transactions on Networking, 9(4):427–438, 2001.

    Article  Google Scholar 

  36. A. P. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri. Real-world environment models for mobile network evaluation. IEEE Journal on Selected Areas in Communications, 23(3):622–632, 2005.

    Article  Google Scholar 

  37. D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks. In Mobile Computing, pages 153–181. Kluwer Academic Publishers, 1996.

    Google Scholar 

  38. P. Jacquet, B. Mans, and G. Rodolakis. Information propagation speed in mobile and delay tolerant networks. In Proceeding of the 29th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Los Alamitos, CA, 2009. IEEE Computer Society.

    Google Scholar 

  39. L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in packet radio networks. Theoretical Computer Science, 243(1-2):289–305, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Kumar, T.-H. Lai, and J. Balogh. On k-coverage in a mostly sleeping sensor network. Wireless Networks, 14:277–294, 2008.

    Article  Google Scholar 

  41. W. Kieß and M. Mauve. A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks, 5:324–339, 2007.

    Article  Google Scholar 

  42. X.-Y. Li. Topology control in wireless ad hoc networks. In S. Basagni, M. Conti, S. Giordano, and I. Stojmenović, editors, Mobile Ad Hoc Networking, chapter 6, pages 175–204. IEEE Press, New York, NY, 2004.

    Google Scholar 

  43. J.-Y. LeBoudec and M. Vojnović. The random trip model: Stability, stationary regime, and perfect simulation. IEEE/ACM Transactions on Networking, 14:1153–1166, 2006.

    Article  Google Scholar 

  44. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage problems in wireless ad-hoc sensor networks. In Proceeding of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages 1380–1387, 2001.

    Google Scholar 

  45. M. D. Penrose. The longest edge of the random minimal spanning tree. The Annals of Applied Probability, 7:340–361, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  46. M. D. Penrose. On the k-connectivity for a geometric random graph. Random Structures & Algorithms, 15(2):145–164, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. D. Penrose. Random Geometric Graphs. Oxford University Press, Oxford, 2003.

    Book  MATH  Google Scholar 

  48. J. Pitman. Probability. Springer, New York, NY, 1999.

    Google Scholar 

  49. R. Rajaraman. Topology control and routing in ad hoc networks: A survey. SIGACT News, 33:60–73, 2002.

    Article  Google Scholar 

  50. E. M. Royer and C-K. Toh. A review of current routing protocols for ad-hoc mobile wireless networks. IEEE Personal Communications, 7:46–55, 1999.

    Article  Google Scholar 

  51. P. Santi. The critical transmitting range for connectivity in mobile ad hoc networks. IEEE Transactions Mobile Computing, 4(3):310–317, 2005.

    Article  Google Scholar 

  52. P. Santi. Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys, 37:164–194, 2005.

    Article  Google Scholar 

  53. P. Santi and D. M. Blough. The critical transmitting range for connectivity in sparse wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(1):25–39, 2003.

    Article  Google Scholar 

  54. P. Santi, D. M. Blough, and F. S. Vainstein. A probabilistic analysis for the range assignment problem in ad hoc networks. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing, (MobiHoc), pages 212–220, 2001.

    Google Scholar 

  55. A. Sen and M. L. Huson. A new model for scheduling packet radio networks. In Proceedings of the 15th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), IEEE Computer Society, Los Alamitos, CA, 1997.

    Google Scholar 

  56. S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks. In Proceedings of the 20th International Parallel and Distributed Processing Symposium (IPDPS), IEEE Computer Society, Los Alamitos, CA, 2006.

    Google Scholar 

  57. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of sensor network communication models. Mobile Computing and Communication Review, 6:28–36, 2002.

    Article  Google Scholar 

  58. J. Tian, J. Hahner, C. Becker, I. Stepanov, and K. Rothermel. Graph-based mobility model for mobile ad hoc network simulation. In Proceedings. 35th Annual Simulation Symposium, IEEE Computer Society, Los Alamitos, CA, 2002.

    Google Scholar 

  59. E. J. van Leeuwen. Optimization and Approximation on Systems of Geometric Objects. PhD thesis, Universiteit van Amsterdam, 2009.

    Google Scholar 

  60. W. Wang, V. Srinivasan, and K.-C. Chua. Trade-offs between mobility and density for coverage in wireless sensor networks. In Proceedings of the 13th annual ACM international conference on Mobile computing and networking (MobiCom), pages 39–50, ACM, New York, 2007.

    Google Scholar 

  61. P.-J. Wan and C.-W. Yi. Asymptotic critical transmission radius and critical neighbor number for -connectivity in wireless ad hoc networks. In J. Murai, C. E. Perkins, and L. Tassiulas, editors, Proceedings of the 5th ACM Interational Symposium on Mobile Ad Hoc Networking and Computing, pages 1–8. ACM, New York, NY, 2004.

    Chapter  Google Scholar 

  62. P.-J. Wan and C.-W. Yi. Coverage by randomly deployed wireless sensor networks. IEEE Transaction on Information Theory, 52(6):2658–2669, 2006.

    Article  MathSciNet  Google Scholar 

  63. X.Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of ACM SenSys, pages 28–39, 2003.

    Google Scholar 

  64. J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In Proceeding of he 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), IEEE Computer Society, Los Alamitos, CA, 2003.

    Google Scholar 

  65. J. Yoon, M. Liu, and B. Noble. Sound mobility models. In D. B. Johnson, A. D. Joseph, and N. H. Vaidya, editors, Proceedings of the Ninth Annual International Conference on Mobile Computing and Networking (MOBICOM), pages 205–216. ACM, New York, NY, 2003.

    Google Scholar 

  66. J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer Networks, 52:2292–2330, 2008.

    Article  Google Scholar 

  67. F. Zhao and L. Guibas, editors. Distributed Environmental Monitoring Using Random Sensor Networks, vol. 2634, Lecture Notes in Computer Science. Springer, 2003.

    Google Scholar 

  68. H. Zang and J. Hou. On deriving the upper bound of alpha-lifetime for large sensor networks. In J. Murai, C. E. Perkins, and L. Tassiulas, editors, Proceedings of the 5th ACM Interational Symposium on Mobile Ad Hoc Networking and Computing, pages 16–24. ACM, New York, NY, 2004.

    Google Scholar 

  69. Z. Zhang. Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Communications Surveys and Tutorials, 8(1-4):24–37, 2006.

    Article  Google Scholar 

Download references

Acknowledgement

This research was partially supported by the FP7-ICT-21527 project of the EC, FRONTS. The authors are grateful to the Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona for hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Díaz, J., Mitsche, D., Santi, P. (2011). Theoretical Aspects of Graph Models for MANETs. In: Nikoletseas, S., Rolim, J. (eds) Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14849-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14849-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14848-4

  • Online ISBN: 978-3-642-14849-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics