Skip to main content

Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway

  • Conference paper
Digital Ecosystems (OPAALS 2010)

Abstract

The p53 tumour suppressor plays key regulatory roles in various fundamental biological processes, including development, ageing and cell differentiation. It is therefore known as “the guardian of the genome” and is currently the most extensively studied protein worldwide. Besides members of the biomedical community, who view p53 as a promising target for novel anti-cancer therapies, the complex network of protein interactions modulating p53’s activity has captivated the attention of theoreticians and modellers due to the possible occurrence of oscillations in protein levels in response to stress. This paper presents new insights into the behaviour of the p53 network, which we acquired by combining mathematical and experimental techniques. Notably, our data raises the question of whether the discrete p53 pulses in single cells, observed using fluorescent labelling, could in fact be an artefact. Furthermore, we propose a new model for the p53 pathway that is amenable to analysis by computational methods developed within the OPAALS project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou-Jaude, W., Ouattara, D.A., Kaufman, M.: From structure to dynamics: Frequency tuning in the p53-mdm2 network. i. Logical approach. J. Theor. Biol. 258, 561–577 (2009)

    Article  Google Scholar 

  2. Agrawal, S., Archer, C., Schaffer, D.V.: Computational models of the notch network elucidate mechanisms of context-dependent signaling, PLoS. Comput. Biol. 5, e1000390 (2009)

    Google Scholar 

  3. Ankers, J.M., Spiller, D.G., White, M.R.H., Harper, C.V.: Spatio-temporal protein dynamics in single living cells. Curr. Opinion Biotechnol. 19, 375–380 (2009)

    Article  Google Scholar 

  4. Batchelor, E., Loewer, A., Lahav, G.: The ups and downs of p53: understanding protein dynamics in single cells. Nat. Rev. Cancer 9, 371–377 (2009)

    Article  Google Scholar 

  5. Batchelor, E., Mock, C.S., Bhan, I., Loewer, A., Lahav, G.: Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Mol. Cell. 30, 277–289 (2008)

    Article  Google Scholar 

  6. Bernard, S., Cajavec, B., Pujo-Menjouet, L., Mackey, M.C., Herzel, H.: Modelling transcriptional feedback loops: the role of Gro/Tle1 in Hes1 oscillations. Phil. Trans. R. Soc. A 364, 1155–1170 (2006)

    Google Scholar 

  7. Bessho, Y., Kageyama, R.: Oscillations, clocks and segmentation. Curr. Opinion Gen. Dev. 13, 379–384 (2003)

    Article  Google Scholar 

  8. Bier, M., Teusink, B., Kholodenko, B.N., Westerhoff, H.: Control analysis of gly-colytic oscillations. Biophys. Chem. 62, 15–24 (1996)

    Article  Google Scholar 

  9. Bottani, S., Grammaticos, B.: Analysis of a minimal model for p53 oscillations. J. Theor. Biol. 249, 235–245 (2007)

    Article  MathSciNet  Google Scholar 

  10. Briscoe, G., Dini, P.: Towards Autopoietic Computing. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  11. Byrne, H.M., van Leeuwen, I.M.M., Owen, M.R., Alarcon, T.A., Maini, P.K.: Multiscale modelling of solid tumour growth. In: Bellomo, N., Chaplain, M.A.J., de Angelis, E. (eds.) Selected Topics on Cancer Modelling: Genesis, Evolution, Immune Competition and Therapy. Modelling and Simulation in Science, Engineering and Technology, Birkhauser, Boston (2008)

    Google Scholar 

  12. Chickarmane, V., Nadim, A., Ray, A., Sauro, H.: A p53 oscillator model of dna break repair control (2006), http://arxiv.org/abs/q-bio.mn/0510002

  13. Ciliberto, A., Novak, B., Tyson, J.J.: Steady states and oscillations in the p53/mdm2 network. Cell Cycle 4, 488–493 (2005)

    Article  Google Scholar 

  14. Dequeant, M.L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., Pourquie, O.: A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006)

    Article  Google Scholar 

  15. Dini, P., Schreckling, D.: A Research Framework for Interaction Computing. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  16. Dionysiou, D.D., Stamatakos, G.S.: Applying a 4D multiscale in vivo tumour growth model to the exploration of radiotherapy scheduling: the effects of weekend treatment gaps and p53 gene status on the response of fast growing solid tumors. Cancer Informatics 2, 113–121 (2006)

    Google Scholar 

  17. Egri-Nagy, A., Dini, P., Nehaniv, C.L., Schilstra, M.J.: Transformation Semigroups as Constructive Dynamical Spaces. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  18. Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R., Prives, C.: Wild-type p53 activates transcription in vivo. Nature 358, 83–84 (1992)

    Article  Google Scholar 

  19. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U.: Oscillations and variability in the p53 system. Mol. Systems Biol. 2 (2006)

    Google Scholar 

  20. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002)

    Article  Google Scholar 

  21. Gordon, K.E., Van Leeuwen, I.M.M., Lain, S., Chaplain, M.A.J.: Spatio-temporal modelling of the p53-mdm2 oscillatory system. Math. Model. Nat. Phenom. 4, 97–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haupt, Y., Maya, R., Kazaz, A., Oren, M.: Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997)

    Article  Google Scholar 

  23. Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R.: Oscillatory expression of the Bhlh factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002)

    Article  Google Scholar 

  24. Horvath, G., Dini, P.: Lie Group Analysis of p53-mdm3 Pathway. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  25. Krishna, S., Jensen, M.H., Sneppen, K.: Minimal model of spiky oscillations in NF-KB. Proc. Natl. Acad. Sci. USA 103, 10840–10845 (2006)

    Article  Google Scholar 

  26. Kruse, J.P., Gu, W.: Modes of p53 regulation. Cell 137, 609–622 (2009)

    Article  Google Scholar 

  27. Lahav, G.: Oscillations by the p53-mdm2 feedback loop. Adv. Exp. Med. Biol. 641, 28–38 (2008)

    Article  MathSciNet  Google Scholar 

  28. Lahav, G., Rosenfield, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., Alon, U.: Dynamics of the p53-mdm2 feedback loop in individual cells. Nat. Gen. 36, 147–150 (2004)

    Article  Google Scholar 

  29. Lane, D.P.: p53, guardian of the genome. Nature 358, 15–16 (1992)

    Article  Google Scholar 

  30. Lev Bar-Or, R., Maya, R., Segel, L.A., Alon, U., Levine, A.J., Oren, M.: Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study. Proc. Natl. Acad. Sci. USA 97, 11250–11255 (2000)

    Article  Google Scholar 

  31. Levine, H.A., Smiley, M.W., Tucker, A.L., Nilsen-Hamilton, M.: A mathematical model for the onset of avascular tumor growth in response to the loss of p53 function. Cancer Informatics 2, 163–188 (2006)

    Google Scholar 

  32. Ma, L., Wagner, J., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.: A plausible model for the digital response of p53 to dna damage. Proc. Natl. Acad. Sci. USA 102, 14266–14271 (2005)

    Article  Google Scholar 

  33. Mihalas, G.I., Simon, Z., Balea, G., Popa, E.: Possible oscillatory behaviour in p53-mdm2 interaction computer simulation. J. Biol. Syst. 8, 21–29 (2000)

    Google Scholar 

  34. Monk, N.A.M.: Oscillatory expression of hes1, p53, and NF-KB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003)

    Article  Google Scholar 

  35. Nelson, D.E., Ihekwaba, A.E., Elliott, M., Johnson, J.R., Gibney, C.A., Foreman, B.E., Nelson, G., See, V., Horton, C.A., Spiler, D.G., Edwards, S.W., McDowell, H.P., Unitt, J.F., Sullivan, E., Grimley, R., Benson, N., Broomhead, D., Kell, D.B., White, M.R.: Oscillations in NF-KB signaling control de dynamics of gene expression. Science 306, 704–708 (2004)

    Article  Google Scholar 

  36. Ogunnaike, B.A.: Elucidating the digital control mechanism for dna damage repair with the p53-mdm2 system: single cell data analysis and ensemble modelling. J. R. Soc. Interface 3, 175–184 (2006)

    Article  Google Scholar 

  37. Pigolotti, S., Krishna, S., Jensen, M.H.: Oscillation patterns in negative feedback loops. Proc. Natl. Acad. Sci. USA 104, 6533–6537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Proctor, C.J., Gray, D.A.: Explaining oscillations and variability in the p53-mdm2 system. BMC Syst. Biol. 2, 75 (2008)

    Article  Google Scholar 

  39. Puszynski, K., Hat, B., Lipniacki, T.: Oscillations and bistability in the stochastic model of p53 regulation. J. Theor. Biol. 254, 452–465 (2008)

    Article  Google Scholar 

  40. Ribba, B., Colin, T., Schnell, S.: A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3, 7 (2006)

    Article  Google Scholar 

  41. Shieh, S.Y., Ikeda, M., Taya, Y., Prives, C.: DNA damage-induced phosphorylation of p53 alleviates inhibition by mdm2. Cell 91, 325–334 (1997)

    Article  Google Scholar 

  42. Srividya, J., Gopinathan, M.S., Schnells, S.: The effects of time delays in a phosphorylation-dephosphorylation pathway. Biophys. Chem. 125, 286–297 (2007)

    Article  Google Scholar 

  43. Tiana, G., Jensen, M.H., Sneppen, K.: Time delay as a key to apoptosis induction in the p53 network. Eur. Phys. J. B 29, 135–140 (2002)

    Article  Google Scholar 

  44. Tiana, G., Krishna, S., Pigolotti, S., Jensen, M.H., Sneppen, K.: Oscillations and temporal signalling in cells. Phys. Biol. 4, R1–R17 (2007)

    Article  Google Scholar 

  45. Tigges, M., Marquez-Lago, T.T., Stelling, J., Fussenegger, M.: A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009)

    Article  Google Scholar 

  46. Vogelstein, B., Lane, D.P., Levine, A.J.: Surfing the p53 network. Nature 408, 307–310 (2007)

    Article  Google Scholar 

  47. Wagner, J., Ma, L., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.: P53-mdm2 loop controlled by a balance of its feedback strength and effective dampening using atm and delayed feedback. IEE Proc. Syst. Biol. 152, 109–118 (2005)

    Article  Google Scholar 

  48. Wawra, C., Kuhl, M., Kestler, H.A.: Extended analyses of the wntβ-cateni pathway: robustness and oscillatory behaviour. FEBS Lett. 581, 4043–4048 (2007)

    Article  Google Scholar 

  49. Zauberman, A., Flusberg, D., Haupt, Y., Barak, Y., Oren, M.: A functional p53-response intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 23, 2584–2592 (1995)

    Article  Google Scholar 

  50. Zhang, T., Brazhnik, P., Tyson, J.J.: Exploring mechanisms of DNA damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle 6, 85–94 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

van Leeuwen, I.M.M., Sanders, I., Staples, O., Lain, S., Munro, A.J. (2010). Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway. In: Antonio Basile Colugnati, F., Lopes, L.C.R., Barretto, S.F.A. (eds) Digital Ecosystems. OPAALS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14859-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14859-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14858-3

  • Online ISBN: 978-3-642-14859-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics