Skip to main content

On-the-Fly Ontology Matching in Smart Spaces: A Multi-model Approach

  • Conference paper
Smart Spaces and Next Generation Wired/Wireless Networking (ruSMART 2010, NEW2AN 2010)

Abstract

Proper functioning of smart spaces demands semantic interoperability between knowledge processors connected to it. As a consequence it is required to develop models that would enable knowledge processors to translate on-the-fly between the internal and smart space ontologies. This paper presents the developed multi-model approach to the above problem, where the major elements of the selected approach are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. SourceForge, Smart-M3, http://sourceforge.net/projects/smart-m3 (retrieved, 10.4.2010)

  2. Semantic Web site, http://www.semanticweb.org (retrieved 10.4.2010)

  3. Smart-M3 Wikipedia page, http://en.wikipedia.org/wiki/Smart-M3 (retrieved 10.4.2010)

  4. Oliver, I., Honkola, J.: Personal Semantic Web Through a Space Based Computing Environment. In: Middleware for Semantic Web 08 at ICSC’08, Santa Clara, CA, USA (2008)

    Google Scholar 

  5. Oliver, I., Honkola, J., Ziegler, J.: Dynamic, Localized Space Based Semantic Webs. In: WWW/Internet Conference, Freiburg, Germany (2008)

    Google Scholar 

  6. Carriero, N., Gelernter, D.: Linda in context. In: Artificial Intelligence and Language Processing, vol. 32(4), pp. 444–458 (1989)

    Google Scholar 

  7. Wells, G.: Coordination Languages: Back to the Future with Linda. In: Proceedings of the Second International Workshop on Coordination and Adaptation Techniques for Software Entities (WCAT’05), Glasgow, Scotland, pp. 87–98 (2005)

    Google Scholar 

  8. AnHai, D., Jayant, M., Pedro, D., Alon, H.: Ontology Matching: A Machine Learning Approach. In: Handbook on Ontologies in Information Systems, 660p. Springer, Heidelberg (2004)

    Google Scholar 

  9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on the semantic web. In: Proceedings of the 11th international conference on World Wide Web, pp. 662–673 (2002)

    Google Scholar 

  10. Hu, W., Jian, N., Qu, Y., Wang, Y.: GMO: A Graph Matching for Ontologies. In: K-CAP Workshop on Integrating Ontologies, pp.43–50 (2005)

    Google Scholar 

  11. Alasoud, A., Haarslev, V., Shiri, N.: An Effective Ontology Matching Technique. In: An, A., Matwin, S., RaÅ›, Z.W., ÅšlÄ™zak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 585–590. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Hovy, E.: Combining and standardizing largescale, practical ontologies for machine translation and other uses. In: The First International Conference on Language Resources and Evaluation (LREC), Granada, Spain, pp. 535–542 (1998)

    Google Scholar 

  13. Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic Integration of Knowledge Sources. In: 2nd International Conference on Information Fusion (FUSION 1999), Sunnyvale, CA (July 6-8, 1999)

    Google Scholar 

  14. Mitra, P., Kersten, M., Wiederhold, G.: Graph-Oriented Model for Articulation of Ontology Interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, p. 86. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Noy, N., Musen, M.: Anchor-PROMPT: Using Non-Local Context for Semantic Matching. In: Workshop on Ontologies and Information Sharing at the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-2001), Seattle, USA (2001)

    Google Scholar 

  16. Castano, S., Ferrara, A., Montanelli, S.: H-Match: an Algorithm for Dynamically Matching Ontologies in Peer-based Systems. In: Proc. of the 1st VLDB Int. Workshop on Semantic Web and Databases (SWDB 2003), Berlin, Germany (2003)

    Google Scholar 

  17. Serafini, L., Bouquet, P., Magnini, B., Zanobini, S.: An algorithm for matching contextualized schemas via SAT. Technical report, DIT University of trento, Italy (2003)

    Google Scholar 

  18. Noy, N., Musen, M.: SMART: Automated Support for Ontology Merging and Alignment. In: 12th Workshop on Knowledge Acquisition, Modeling, and Management, Banff, Alberta (1999)

    Google Scholar 

  19. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An Environment for Merging and Testing Large Ontologies. In: Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR’2000). Breckenridge, Colorado, USA (2000), http://www.ksl.stanford.edu/software/chimaera/ (retrieved, 10.4.2010)

  20. Aumueller, D., Do, H., Massmann, S., Rahm, E.: Schema and Ontology Matching with COMA++. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 906–908 (2005)

    Google Scholar 

  21. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings of the 18th International Conference on Data Engineering, USA, pp. 117–128 (2002)

    Google Scholar 

  22. Cruz, I., Antonelli, F., Stroe, C.: Efficient Selection of Mappings and Automatic Quality-driven Combination of Matching Methods. In: The Fourth International Workshop on Ontology Matching, Washington DC, USA (2009)

    Google Scholar 

  23. Ritze, D., Meilicke, C., Šváb-Zamazal, O., Stuckenschmidt, H.: A pattern-based ontology matching approach for detecting complex correspondences. In: The Fourth International Workshop on Ontology Matching, Washington DC, USA (2009)

    Google Scholar 

  24. Giunchiglia, F., Maltese, V., Autayeu, A.: Computing Minimal Mappings. In: The Fourth International Workshop on Ontology Matching, Washington DC, USA (2009)

    Google Scholar 

  25. Klein, M., Kiryakov, W., Ognyanov, D., Fensel, D.: Ontology Versioning and Change Detection on the Web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 197. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Smirnov, A., Kashevnik, A., Shilov, N., Oliver, I., Lappetelainen, A., Boldyrev, S.: Anonymous Agent Coordination in Smart Spaces: State-of-the-Art. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) ruSMART 2009. LNCS, vol. 5764, pp. 42–51. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smirnov, A., Kashevnik, A., Shilov, N., Balandin, S., Oliver, I., Boldyrev, S. (2010). On-the-Fly Ontology Matching in Smart Spaces: A Multi-model Approach. In: Balandin, S., Dunaytsev, R., Koucheryavy, Y. (eds) Smart Spaces and Next Generation Wired/Wireless Networking. ruSMART NEW2AN 2010 2010. Lecture Notes in Computer Science, vol 6294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14891-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14891-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14890-3

  • Online ISBN: 978-3-642-14891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics