Abstract
This paper devises a particle swarm optimization-based extremum seeking control (ESC) scheme. In the scheme, the system states are guided to the optimal point by the controller based on the output measurement, and the explicit form of the performance function is not needed. By measuring the performance function value online, a sequence, generated by the particle swarm optimization algorithm, steers the regulator that drives the system states approaching to the set point that optimizes the performance. We also propose an algorithm that first reshuffles the sequence, and then inserts intermediate states into the sequence, to reduce the regulator gain and oscillation induced by stochastic, population-based searching algorithms. Simulation examples demonstrate the effectiveness and robustness of the proposed scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bastin, G., Nesic, D., Tan, Y., Mareels, I.: On extremum seeking in bioprocesses with multivalued cost functions. Biotechnol. Prog. 25(3), 683–689 (2009)
Beaudoin, J.F., Cadot, O., Aider, J.L., Wesfreid, J.E.: Drag reduction of a bluff body using adaptive control methods. Phys. Fluids 18(8) (August 2006)
Dasheng, L., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm based on particle swarm optimization. IEEE J. SMCB 37(1), 42–50 (2007)
DeHaan, D., Guay, M.: Extremum-seeking control of state-constrained nonlinear systems. Automatica 41(9), 1567–1574 (2005)
El-Zonkoly, A.M.: Optimal tuning of power systems stabilizers and avr gains using particle swarm optimization. Expert Systems with Applications 31(3), 551–557 (2006)
Guay, M., Zhang, T.: Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainties. Automatica 39(7), 1283–1293 (2003)
Hudon, N., Guay, M., Perrier, M., Dochain, D.: Adaptive extremum-seeking control of convection-reaction distributed reactor with limited actuation. Comput. Chem. Eng. 32(12), 2994–3001 (2008)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, pp. 1942–1948. IEEE Press, Proceedings (1995)
Killingsworth, N., Krstic, M.: Pid tuning using extremum seeking: online, modelfree performance optimization. IEEE Contr. Syst. Mag. 26(1), 70–79 (2006)
Krstic, M.: Performance improvement and limitations in extremum seeking control. Systems & Control Letters 39(5), 313–326 (2000)
Krstic, M., Wang, H.H.: Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36(4), 595–601 (2000)
Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for minimax problems. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, vol. 2, pp. 1576–1581 (2002)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE T. Evolut. Comput. 10(3), 281–295 (2006)
Panda, G., Mohanty, D., Majhi, B., Sahoo, G.: Identification of nonlinear systems using particle swarm optimization technique. In: IEEE Congress on Evolutionary Computation CEC 2007, pp. 3253–3257 (2007)
Rapaic, M.R., Kanovic, Z.: Time-varying pso - convergence analysis, convergencerelated parameterization and new parameter adjustment schemes. Information Processing Letters 109(11), 548–552 (2009)
Kabadi, A.P. (ed.): The Bottleneck TSP. The Traveling Salesman Problem and Its Variation. Kluwer Acadamic Publishers, Netherlands (2002)
Xin, C., Yangmin, L.: A modified pso structure resulting in high exploration ability with convergence guaranteed. IEEE J. SMCB 37(5), 1271–1289 (2007)
Zhang, C., Ordonez, R.: Numerical optimization-based extremum seeking control with application to abs design. IEEE T. Automat. Contr. 52(3), 454–467 (2007)
Zhang, C., Ordonez, R.: Robust and adaptive design of numerical optimizationbased extremum seeking control. Automatica 45(3), 634–646 (2009)
Zhong, Z.d., Huo, H.b., Zhu, X.j., Cao, G.y., Ren, Y.: Adaptive maximum power point tracking control of fuel cell power plants. J. Power Sources 176(1), 259–269 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, SJ., Chen, H., Kong, L. (2010). Particle Swarm Optimization-Based Extremum Seeking Control. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-14922-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14921-4
Online ISBN: 978-3-642-14922-1
eBook Packages: Computer ScienceComputer Science (R0)