Skip to main content

Genome-Wide DNA Methylation Profiling in 40 Breast Cancer Cell Lines

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6215))

Included in the following conference series:

Abstract

DNA methylation plays important roles in gene regulation and functions. Aberrant methylation, either hypomethylation or hypermethylation, has been reported to cause various diseases, especially cancers. Breast cancer ranked the fifth according to the number of cancer deaths in the world. To systematically characterize the epigenetic modification in breast cancer, we examined the genome-wide methylation profiling in 40 breast cancer cell lines. We identified a gene signature consisting of 345 differentially methylated genes, which could be used to discriminate estrogen receptor (ER)-negative and ER-positive breast cancer cell lines. This gene signature is promising for diagnosis and therapies of breast cancer. In the follow up functional analysis of this gene signature, three enriched networks could be highlighted. Interestingly, one of these networks contained estrogen receptor, implying its functional importance of ER-centric module. Finally, we examined the correlation between methylation and expression of these breast cancer cell lines. Very few genes showed significant correlation, suggesting that gene expression regulated by methylation is a complex biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Putti, T.C., El-Rehim, D.M., Rakha, E.A., Paish, C.E., Lee, A.H., Pinder, S.E., Ellis, I.O.: Estrogen Receptor-negative Breast Carcinomas: a Review of Morphology and Immunophenotypical Analysis. Mod. Pathol. 18(1), 26–35 (2005)

    Article  Google Scholar 

  2. Antequera, F.: Structure, Function and Evolution of CpG Island Promoters. Cell Mol. Life Sci. 60(8), 1647–1658 (2003)

    Article  Google Scholar 

  3. Jones, P.A., Baylin, S.B.: The Fundamental Role of Epigenetic Events in Cancer. Nat. Rev. Genet. 3(6), 415–428 (2002)

    Google Scholar 

  4. Cho, B., Lee, H., Jeong, S., Bang, Y.J., Lee, H.J., Hwang, K.S., Kim, H.Y., Lee, Y.S., Kang, G.H., Jeoung, D.I.: Promoter Hypomethylation of a Novel Cancer/testis Antigen Gene CAGE is Correlated with its Aberrant Expression and is Seen in Premalignant Stage of Gastric Carcinoma. Biochem. Biophys. Res. Commun. 307(1), 52–63 (2003)

    Article  Google Scholar 

  5. Chen, R.Z., Pettersson, U., Beard, C., Jackson-Grusby, L., Jaenisch, R.: DNA Hypomethylation Leads to Elevated Mutation Rates. Nature 395(6697), 89–93 (1998)

    Article  Google Scholar 

  6. Eden, A., Gaudet, F., Waghmare, A., Jaenisch, R.: Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. Science 300(5618), 455 (2003)

    Article  Google Scholar 

  7. Baylin, S.B., Herman, J.G.: DNA Hypermethylation in Tumorigenesis: Epigenetics Joins Genetics. Trends Genet. 16(4), 168–174 (2000)

    Article  Google Scholar 

  8. Sakai, T., Toguchida, J., Ohtani, N., Yandell, D.W., Rapaport, J.M., Dryja, T.P.: Allele-specific Hypermethylation of the Retinoblastoma Tumor-suppressor Gene. Am. J. Hum. Genet. 48(5), 880–888 (1991)

    Google Scholar 

  9. Ito, Y., Koessler, T., Ibrahim, A.E., Rai, S., Vowler, S.L., Abu-Amero, S., Silva, A.L., Maia, A.T., Huddleston, J.E., Uribe-Lewis, S., et al.: Somatically Acquired Hypomethylation of IGF2 in Breast and Colorectal Cancer. Hum. Mol. Genet. 17(17), 2633–2643 (2008)

    Article  Google Scholar 

  10. Fernandez, S.V., Snider, K.E., Wu, Y.Z., Russo, I.H., Plass, C., Russo, J.: DNA- Methylation Changes in a Human Cell Model of Breast Cancer Progression. Mutat. Res. (2010) (Advanced online)

    Google Scholar 

  11. Laird, P.W.: Principles and Challenges of Genome-wide DNA Methylation Analysis. Nat. Rev. Genet. 11(3), 191–203 (2010)

    Article  Google Scholar 

  12. Sun, S., Yan, P.S., Huang, T.H., Lin, S.: Identifying Differentially Methylated Genes Using Mixed Effect and Generalized Least Square Models. BMC Bioinformatics 10, 404 (2009)

    Article  Google Scholar 

  13. Guo, A.Y., Sun, J., Riley, B.P., Thiselton, D.L., Kendler, K.S., Zhao, Z.: The Dystrobrevin-binding Protein 1 Gene: features and networks. Mol. Psychiatry 14(1), 18–29 (2009)

    Article  Google Scholar 

  14. Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., et al.: A Collection of Breast Cancer Cell Lines for the Study of Functionally Distinct Cancer Subtypes. Cancer Cell 10(6), 515–527 (2006)

    Article  Google Scholar 

  15. Gazdar, A.F., Kurvari, V., Virmani, A., Gollahon, L., Sakaguchi, M., Westerfield, M., Kodagoda, D., Stasny, V., Cunningham, H.T.: Wistuba, II et al: Characterization of Paired Tumor and Non-tumor Cell Lines Established from Patients with Breast Cancer. Int. J. Cancer 78(6), 766–774 (1998)

    Article  Google Scholar 

  16. Klein, C.B., Costa, M.: DNA Methylation and Gene Expression: Introduction and Overview. Mutat. Res. 386(2), 103–105 (1997)

    Article  Google Scholar 

  17. Flanagan, J.M., Cocciardi, S., Waddell, N., Johnstone, C.N., Marsh, A., Henderson, S., Simpson, P., Silva, L., Khanna, K., Lakhani, S., et al.: DNA Methylome of Familial Breast Cancer Identifies Distinct Profiles Defined by Mutation Status. Am. J. Hum. Genet. 86(3), 420–433 (2010)

    Article  Google Scholar 

  18. Metzker, M.L.: Sequencing Technologies - the Next Generation. Nat. Rev. Genet. 11(1), 31–46 (2010)

    Article  Google Scholar 

  19. Clarke, J., Wu, H.C., Jayasinghe, L., Patel, A., Reid, S., Bayley, H.: Continuous Base Identification for Single-molecule Nanopore DNA Sequencing. Nat. Nanotechnol. 4(4), 265–270 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, L., Zheng, S., Sun, S., Huang, T.H., Zhao, Z. (2010). Genome-Wide DNA Methylation Profiling in 40 Breast Cancer Cell Lines. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14922-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14921-4

  • Online ISBN: 978-3-642-14922-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics