Skip to main content

Applying Wikipedia-Based Explicit Semantic Analysis for Query-Biased Document Summarization

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6215))

Included in the following conference series:

Abstract

Query-biased summary is a query-centered document brief representation. In many scenarios, query-biased summarization can be accomplished by implementing query-customized ranking of sentences within the web page. However, it is a tough work to generate this summary since it is hard to consider the similarity between the query and the sentences of a particular document for lacking of information and background knowledge behind these short texts. We focused on this problem and improved the summary generation effectiveness by involving semantic information in the machine learning process. And we found these improvements are more significant when query term occurrences are relatively low in the document.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://wordnet.princeton.edu

  2. Amini, M.-R., Gallinari, P.: The use of unlabeled data to improve supervised learning for text summarization. In: SIGIR, pp. 105–112 (2002)

    Google Scholar 

  3. Chuang, W.T., Yang, J.: Extracting sentence segments for text summarization: a machine learning approach. In: SIGIR, pp. 152–159 (2000)

    Google Scholar 

  4. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  5. Jerome, H.: Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189–1232 (2000)

    MATH  Google Scholar 

  6. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: IJCAI 2007: Proceedings of the 20th international joint inproceedings on Artifical intelligence, pp. 1606–1611. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    Google Scholar 

  7. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

    Article  Google Scholar 

  8. Metzler, D., Kanungo, T.: Machine Learned Sentence Selection Strategies for Query-Biased Summarization. Learning to Rank for Information Retrieval, 40

    Google Scholar 

  9. Song, F., Bruce Croft, W.: A general language model for information retrieval. In: Proceedings of the 1999 ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 279–280 (1999)

    Google Scholar 

  10. Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval. In: SIGIR 1998: Proceedings of the 21st annual international ACM SIGIR inproceedings on Research and development in information retrieval, pp. 2–10. ACM, New York (1998)

    Google Scholar 

  11. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast generation of result snippets in web search. In: SIGIR, pp. 127–134 (2007)

    Google Scholar 

  12. Wang, C., Jing, F., Zhang, L., Zhang, H.-J.: Learning query-biased web page summarization. In: CIKM 2007: Proceedings of the sixteenth ACM inproceedings on Conference on information and knowledge management, pp. 555–562. ACM, New York (2007)

    Google Scholar 

  13. Zhai, C.X., Lafferty, J.D.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: SIGIR, pp. 334–342 (2001)

    Google Scholar 

  14. Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G.: A general boosting method and its application to learning ranking functions for web search. In: NIPS (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, Y., Guo, Z., Ren, P., Yu, Y. (2010). Applying Wikipedia-Based Explicit Semantic Analysis for Query-Biased Document Summarization. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14922-1_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14921-4

  • Online ISBN: 978-3-642-14922-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics