Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6216))

Included in the following conference series:

Abstract

Isometric feature mapping (ISOMAP) has two computational bottlenecks. The first is calculating the N×N graph distance matrix D N . Using Floyd’s algorithm, this is O(N 3); this can be improved to O(kN 2 log N) by implementing Dijkstra’s algorithm. The second bottleneck is the MDS eigenvalue calculation, which involves a full N×N matrix and has complexity O(N 3). In this paper, we address both of these inefficiencies by a greedy approximation algorithm of minimum set coverage (MSC). The algorithm learns a minimum subset of overlapping neighborhoods for high dimensional data that lies on or near a low dimensional manifold. The new framework leads to order-of-magnitude reductions in computation time and makes it possible to study much larger problems in manifold learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1989)

    Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  3. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall, Boca Raton (2001)

    MATH  Google Scholar 

  4. Lin, T., Zha, H.: Riemannian Manifold Learning. IEEE Trans. PAMI 30(5), 796–809 (2008)

    Google Scholar 

  5. Tenenbaum, J., de Silva, V., Langford, J.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  6. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  7. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  8. Donoho, D., Grimes, C.: Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-dimensional Data. Proc. Nat’l academy of sciences 100(10), 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Weinberger, K., Saul, L.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. In: Proc. of CVPR, vol. 2, pp. 988–995 (2004)

    Google Scholar 

  10. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM J. Scientific Computing 26(1), 313–338 (2005)

    Article  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  13. Silva, V., Tenenbaum, J.: Global versus Local Methods in Nonlinear Dimensionality Reduction. In: Proc. of NIPS, vol. 15, pp. 705–712 (2003)

    Google Scholar 

  14. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lei, YK., Xu, Y., Zhang, SW., Wang, SL., Ding, ZG. (2010). Fast ISOMAP Based on Minimum Set Coverage. In: Huang, DS., Zhang, X., Reyes García, C.A., Zhang, L. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2010. Lecture Notes in Computer Science(), vol 6216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14932-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14932-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14931-3

  • Online ISBN: 978-3-642-14932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics