Abstract
Half positionality is the property of a language of infinite words to admit positional winning strategies, when interpreted as the goal of a two-player game on a graph. Such problem applies to the automatic synthesis of controllers, where positional strategies represent efficient controllers. As our main result, we describe a novel sufficient condition for half positionality, more general than what was previously known. Moreover, we compare our proposed condition with several others, proposed in the recent literature, outlining an intricate network of relationships, where only few combinations are sufficient for half positionality.
Work partially supported by MIUR PRIN Project n.2007-9E5KM8.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)
Colcombet, T., Niwinski, D.: On the positional determinacy of edge-labeled games. Theor. Comput. Sci. 352(1-3), 190–196 (2006)
Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FOCS 1991, pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)
Gradel, E.: Positional determinancy of infinite games. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 4–18. Springer, Heidelberg (2004)
Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)
Kopczyński, E.: Half-positional determinancy of infinite games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 336–347. Springer, Heidelberg (2006)
Kopczyński, E.: Omega-regular half-positional winning conditions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 41–53. Springer, Heidelberg (2007)
Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Computation 164, 322–344 (2001)
McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65, 149–184 (1993)
Mostowski, A.W.: Games with forbidden positions. Technical Report 78, Uniwersytet Gdański, Instytut Matematyki (1991)
Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)
Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. J. of Theor. Comp. Sci. 200(1-2), 135–183 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bianco, A., Faella, M., Mogavero, F., Murano, A. (2010). Exploring the Boundary of Half Positionality. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds) Computational Logic in Multi-Agent Systems. CLIMA 2010. Lecture Notes in Computer Science(), vol 6245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14977-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-14977-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14976-4
Online ISBN: 978-3-642-14977-1
eBook Packages: Computer ScienceComputer Science (R0)