Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 80))

Abstract

Search engines are found the most powerful tools of information systems. However, in case of multilingual systems, they are rather oriented towards shallow techniques. This paper outlines our study into refining query language on the comparison basis of some search engines that utilize different translation models in order to propose a novel search strategy which significantly imposes the Web traffic optimization, in particular of the Deep, or Hidden Web. The framework proposed reveals inadequacies of the trans lingual information processing and provides the benefits for the user interacting with the information system. Our analysis of the context and the syntactic structure enables the user to retrieve sentences in its natural form in at least two languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hiemstra, D., Kraaij, W., Pohlmann, R., Westerveld, T.: Translation Resources, Merging Strategies and Relevance feedback for Cross-language Information Retrieval. In: Peters, C. (ed.) CLEF 2000. LNCS, vol. 2069, pp. 102–115. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Brashler, M., Ripplinger, B., Schauble, P.: Experiments with the Eurospider Retrieval System for CLEF 2001. In: Peters, C., et al. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 102–110. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Gey, F.C., Jiang, H., Petras, V., Chen, A.: Cross-Language Retrieval for the CLEF Collections – Comparing Multiple Methods of Retrieval. In: Peters, C. (ed.) CLEF 2000. LNCS, vol. 2069, pp. 116–128. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Si, L., Callan, J., Cetintas, S., Yuan, H.: An effective and efficient results merging strategy for multilingual information retrieval in federated search environments, Information Retrieval, pp. 1–24. Springer, Heidelberg (2008)

    Google Scholar 

  5. Schermen, C.: Google Power – Unleash the full potential of Google. McGraphHill/Osborne, US (2005)

    Google Scholar 

  6. Kraaij, W.: Variations on Language Modeling for Information Retrieval,, ISSN 1381-3617; No. 04-62 (CTIT Ph.D. - thesis series, Taaluitgeverij Neslia Paniculata, Uitgeverij voor Lezers en Schrijvers van Talige Boeken, Rotterdam, The Netherlands (2004)

    Google Scholar 

  7. Lam, W., Chan, K., Radev, D., Saggion, H., Teufel, S.: Context-based generic cross-lingual retrieval of documents and automated summaries. Journal of the American Society for Information Science and Technology 56(2), 129 (2005) ABI/INFORM Trade & Industry

    Article  Google Scholar 

  8. Eldén, L.: Matrix Methods in Data Mining and Pattern Recognition. SIAM, The Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  9. Steinhart, D.J.: Summary Street - an Intelligent Tutoring System for Improving Student Writing through the Use of Latent Semantic Analysis, Faculty, of the Graduate School of the University of Colorado, Department of Psychology, Ph.D. Thesis (2001)

    Google Scholar 

  10. Park, L., Ramamohanarao, K.: Efficient Storage and Retrieval of Probabilistic Latent Semantic Information for Information Retrieval. The VLDB Journal (2009)

    Google Scholar 

  11. Wolfe, M.B.W., Goldman, S.R.: Use of Latent Semantic Analysis for Predicting Psychological Phenomena: Two Issues and Proposed Solutions. Behaviour Research Methods 35, 22–31 (2003)

    Google Scholar 

  12. Corft, B.: The Modern Algebra of Information Retrieval. Springer, Heidelberg (2008)

    Google Scholar 

  13. Hock, R.: The Extreme Searcher’s Internet Handbook – A Guide for a Serious Searcher, 2nd edn. Randolph Hock, US (2008)

    Google Scholar 

  14. Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank Computation and the Structure of the Web: Experiments and Algorithms., Technical Report, IBM Almaden Research Center (November 2001)

    Google Scholar 

  15. Baush, P.: Yahoo Hacks. O’Reilly Media Inc., Sebastopol (2006)

    Google Scholar 

  16. Kasman Valenza, J.: Power Research Tools – Learning Activities and Posters, Joyce Kasman Valenza (2003) ISBN 0-8389-0838-1

    Google Scholar 

  17. Su, W., Wang, J.: Automatic Hierarchical Classification of Structured Deep Web Databases. In: Aberel, K. (ed.) WISE 2006. LNCS, vol. 4255, pp. 210–221. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mizera-Pietraszko, J., Zgrzywa, A. (2010). Vertical Search Strategy in Federated Environment. In: Nguyen, N.T., Zgrzywa, A., Czyżewski, A. (eds) Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14989-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14989-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14988-7

  • Online ISBN: 978-3-642-14989-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics