Skip to main content

Dangerous Sound Event Recognition Using Support Vector Machine Classifiers

  • Chapter
Advances in Multimedia and Network Information System Technologies

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 80))

Abstract

A method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification. The performance of the classifier was tested on a set of 372 example sounds, yielding high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burges, C.: A tutorial on Support Vector Machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  2. Casey, M.: General sound classification and similarity in MPEG-7. Organized Sound Archive 6(2), 153–164 (2001)

    MathSciNet  Google Scholar 

  3. Chang, C., Lin, J.: LIBSVM: a library for Support Vector Machines. Dept. of Computer Science. National Taiwan University, Taipei (2009)

    Google Scholar 

  4. Daudet, L.: A Review on Techniques for the Extraction of Transients in Musical Signals. In: Proc. CMMR 2005, Pisa (2005)

    Google Scholar 

  5. Hsu, W., Chang, C., Lin, J.: A practical guide to support vector classification. Dept. of Computer Science. National Taiwan university, Taipei

    Google Scholar 

  6. Kim, H., Moreau, N., Sikora, T.: Audio classification based on MPEG-7 spectral basis representations. IEEE Trans. on Circuits and Systems for Video Technology 14, 716–725 (2004)

    Article  Google Scholar 

  7. Kostek, B., Zwan, P., Dziubinski, M.: Musical Sound Parameters Revisited. In: Music Acoustic Conference, Stockholm, pp. 623–626 (2003)

    Google Scholar 

  8. Nitalampiras, S., Potamitis, I., Fakotakis, N.: On acoustic surveillance of hazardous situations. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 165-168 (2009)

    Google Scholar 

  9. Platt, J.: Sequential minimal optimization: a fast algorithm for training Support Vector Machines. Technical Report MSR-TR-98-14 Microsoft Research (1998)

    Google Scholar 

  10. Rabaoui, A., Kadri, H., Lachiri, Z., Ellouze, N.: Using robust features with multi-class SVMs to classify noisy sounds. In: Int. Symp. on Communications, Control and signal Proc., Malta

    Google Scholar 

  11. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  12. Wang, J.F., Wang, J.C., Huang, T., Hsu, C.: Home environmental sound recognition based on MPEG-7 features. In: 2003 IEEE Symp. on Mico-NanoMechatronics and Human Science, vol. 2, pp. 682–685 (2003)

    Google Scholar 

  13. Zwan, P., Czyzewski, A.: Automatic sound recognition for security purposes. In: Proc. 124th Audio Engineering Society Convention Amsterdam (2008)

    Google Scholar 

  14. Waikato Environment for Knowledge Analysis, http://www.cs.waikato.ac.nz/ml/weka/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Łopatka, K., Zwan, P., Czyżewski, A. (2010). Dangerous Sound Event Recognition Using Support Vector Machine Classifiers. In: Nguyen, N.T., Zgrzywa, A., Czyżewski, A. (eds) Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14989-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14989-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14988-7

  • Online ISBN: 978-3-642-14989-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics