Abstract
In this paper a new concept is proposed for finding communities in a social network based on a mixed graph theoretic model of a standard and a bipartite graph. Compared to previous methods the introduced algorithm has the advantage of noise-tolerance and is applicable independently of the size of the clusters in the graph. The cluster core-mining method is based on a modified MST algorithm. Clustering incomplete data is done by using bipartite graphs and fuzzy membership functions.
This work was partially supported by the Hungarian Research Fund No.80352.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bala, S.E., Chvatal, V., Nesetril, J.: On the maximum weight clique problem. Mathematics of Operations Research 12(3), 522–535 (1987)
Basu, A.: Social Network Analysis of Terrorist Organizations in India. In: 2006 Conference of the North American Association for Computational Social and Organizational Science (2006)
Ceglowski, M., Coburn, A., Cuadrado, J.: Semantic Search of Unstructured Data using Contextual Network Graphs. National Institute for Technology and Liberal Education (May 16, 2003)
Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community Detection in Large-Scale Social Networks. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS, vol. 5439. Springer, Heidelberg (2009)
Faloutsos, C., McCurley, K.S., Tomkins, A.: Connection Subgraphs in Social Networks. In: Workshop on Link Analysis, Counterterrorism, and Privacy. SIAM International Conference on Data Mining (2004)
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–104. Plenum Press, New York (1972)
Kleinberg, J.M.: Authoritative sources in a Hyperlinked Environment. Journal of the ACM 46, 604–632 (1999)
Klugar, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions. Genome Research 13, 703–716 (2003)
Kruskal, J.B.: On the shortest spanning tree of a graph and the traveling salesman problem. In: Proc. Amer. Math. Society, vol. 7, pp. 48–50 (1956)
Li, J., Sim, K., Liu, G., Wong, L.: Maximal Quasi-Bicliques with Balanced Noise Tolerance: Concepts and Co-clustering Applications. In: Proceedings of the 2008 SIAM International Conference on Data Mining (2008)
Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1(1) (2004)
Mishra, N., Ron, D., Swaminathan, R.: On Finding Large Conjunctive Clusters. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 448–462. Springer, Heidelberg (2003)
Schenker, A., Last, M., Bunke, H., Kandel, A.: Comparison of Distance Measures for Graph-Based Clustering of Documents. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 187–263. Springer, Heidelberg (2003)
Tan, J.: Inapproximability of Maximum Weighted Edge Biclique and Its Applications. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 282–293. Springer, Heidelberg (2008)
Xu, Y., Olman, V., Uberbacher, E.: Minimum Spanning Trees for Gene Expression Data. Genome Informatics (12), 24–33 (2001)
Yang, J., Wang, W., Wang, H., Yu, P.: δ-cluster: Capturing Subspace Correlation in a Large Data Set. In: Proc. 2002 ACM SIGMOD Conf. Management of Data, pp. 394–405 (2002)
Zhao, D., Yang, L.: Incremental Isometric Embedding of High-Dimensional Data Using Connected Neighborhood Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(1) (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Keszler, A., Kiss, A., Sziranyi, T. (2010). Noise Tolerant Community Detection Using a Mixed Graph Model. In: Nguyen, N.T., Zgrzywa, A., Czyżewski, A. (eds) Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14989-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-14989-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14988-7
Online ISBN: 978-3-642-14989-4
eBook Packages: EngineeringEngineering (R0)