Abstract
Ambient isotopic approximations are fundamental for correct representation of the embedding of geometric objects in R 3, with a detailed geometric construction given here. Using that geometry, an algorithm is presented for efficient update of these isotopic approximations for dynamic visualization with a molecular simulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
N. Amenta, T. J. Peters, and A. C. Russell. Computational topology: ambient isotopic approximation of 2-manifolds.Theoretical Computer Science, 305(1-3):3–15, 2003.
R. H. Bing. The Geometric Topology of 3-Manifolds. American Mathematical Society, Providence, RI, 1983.
Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter. Isotopic implicit surface meshing. In László Babai, editor, STOC, pages 301–309. ACM, 2004.
Jason Cantarella, Michael Piatek, and Eric Rawdon. Visualizing the tightening of knots. In VIS ’05: Proceedings of the conference on Visualization ’05, pages 575–582, Washington, DC, USA, 2005. IEEE Computer Society.
Kenneth L. Clarkson. Building triangulations using ɛs-nets. In Jon M. Kleinberg, editor, STOC, pages 326–335. ACM, 2006.
David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.
David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Persistent homology for kernels, images, and cokernels. In Claire Mathieu, editor, SODA, pages 1011–1020. SIAM, 2009.
Luiz Henrique de Figueiredo, Jorge Stolfi, and Luiz Velho. Approximating parametric curves with strip trees using affine arithmetic. Comput. Graph. Forum, 22(2):171–180, 2003.
T. K. Dey, H. Edelsbrunner, and S. Guha. Computational topology. In Advances in Discrete and Computational Geometry (Contemporary Mathematics 223, pages 109–143. American Mathematical Society, 1999.
Daniel Freedman. Combinatorial curve reconstruction in Hilbert spaces: A new sampling theory and an old result revisited. Comput. Geom., 23(2):227–241, 2002.
M. W. Hirsch. Differential Topology. Springer-Verlag, New York, 1976.
K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell. Modeling time and topology for animation and visualization with examples on parametric geometry. Theoretical Computer Science, 405:41–49, 2008.
T. Maekawa and N. M. Patrikalakis. Shape Interrogation for Computer Aided Design and Manufacturing. Springer, New York, 2002.
T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu. Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 15(5):437–458, 1998.
L. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell. Topological neighborhoods for spline curves : Practice & theory. Lecture Notes in Computer Science: Real Number Algorithms, 5045:149 – 161, 2008.
E. L. F. Moore. Computational Topology of Spline Curves for Geometric and Molecular Approximations. PhD thesis, The University of Connecticut, 2006.
E. L. F. Moore, T. J. Peters, and J. A. Roulier. Preserving computational topology by subdivision of quadratic and cubic Bézier curves. Computing, 79(2):317–323, 2007.
J. Peters and X. Wu. On the optimality of piecewise linear max-norm enclosures based on slefes. In Proceedings of Curves and Surfaces, St Malo 2002. Vanderbilt Press, 2003.
L. Piegl and W. Tiller.TheNURBSBook, 2nd Edition.Springer, New York, NY, 1997.
Carlo H. Séquin. CAD tools for aesthetic engineering. Computer-Aided Design, 37(7):737–750, 2005.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Jordan, K.E., Miller, L.E., Peters, T.J., Russell, A.C. (2011). Geometric Topology & Visualizing 1-Manifolds. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-15014-2_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15013-5
Online ISBN: 978-3-642-15014-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)