Skip to main content

Geometric Topology & Visualizing 1-Manifolds

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Ambient isotopic approximations are fundamental for correct representation of the embedding of geometric objects in R 3, with a detailed geometric construction given here. Using that geometry, an algorithm is presented for efficient update of these isotopic approximations for dynamic visualization with a molecular simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Amenta, T. J. Peters, and A. C. Russell. Computational topology: ambient isotopic approximation of 2-manifolds.Theoretical Computer Science, 305(1-3):3–15, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. H. Bing. The Geometric Topology of 3-Manifolds. American Mathematical Society, Providence, RI, 1983.

    MATH  Google Scholar 

  3. Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter. Isotopic implicit surface meshing. In László Babai, editor, STOC, pages 301–309. ACM, 2004.

    Google Scholar 

  4. Jason Cantarella, Michael Piatek, and Eric Rawdon. Visualizing the tightening of knots. In VIS ’05: Proceedings of the conference on Visualization ’05, pages 575–582, Washington, DC, USA, 2005. IEEE Computer Society.

    Google Scholar 

  5. Kenneth L. Clarkson. Building triangulations using ɛs-nets. In Jon M. Kleinberg, editor, STOC, pages 326–335. ACM, 2006.

    Google Scholar 

  6. David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  7. David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Persistent homology for kernels, images, and cokernels. In Claire Mathieu, editor, SODA, pages 1011–1020. SIAM, 2009.

    Google Scholar 

  8. Luiz Henrique de Figueiredo, Jorge Stolfi, and Luiz Velho. Approximating parametric curves with strip trees using affine arithmetic. Comput. Graph. Forum, 22(2):171–180, 2003.

    Google Scholar 

  9. T. K. Dey, H. Edelsbrunner, and S. Guha. Computational topology. In Advances in Discrete and Computational Geometry (Contemporary Mathematics 223, pages 109–143. American Mathematical Society, 1999.

    Google Scholar 

  10. Daniel Freedman. Combinatorial curve reconstruction in Hilbert spaces: A new sampling theory and an old result revisited. Comput. Geom., 23(2):227–241, 2002.

    Google Scholar 

  11. M. W. Hirsch. Differential Topology. Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  12. K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell. Modeling time and topology for animation and visualization with examples on parametric geometry. Theoretical Computer Science, 405:41–49, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Maekawa and N. M. Patrikalakis. Shape Interrogation for Computer Aided Design and Manufacturing. Springer, New York, 2002.

    MATH  Google Scholar 

  14. T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu. Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 15(5):437–458, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell. Topological neighborhoods for spline curves : Practice & theory. Lecture Notes in Computer Science: Real Number Algorithms, 5045:149 – 161, 2008.

    Google Scholar 

  16. E. L. F. Moore. Computational Topology of Spline Curves for Geometric and Molecular Approximations. PhD thesis, The University of Connecticut, 2006.

    Google Scholar 

  17. E. L. F. Moore, T. J. Peters, and J. A. Roulier. Preserving computational topology by subdivision of quadratic and cubic Bézier curves. Computing, 79(2):317–323, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Peters and X. Wu. On the optimality of piecewise linear max-norm enclosures based on slefes. In Proceedings of Curves and Surfaces, St Malo 2002. Vanderbilt Press, 2003.

    Google Scholar 

  19. L. Piegl and W. Tiller.TheNURBSBook, 2nd Edition.Springer, New York, NY, 1997.

    MATH  Google Scholar 

  20. Carlo H. Séquin. CAD tools for aesthetic engineering. Computer-Aided Design, 37(7):737–750, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk E. Jordan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Jordan, K.E., Miller, L.E., Peters, T.J., Russell, A.C. (2011). Geometric Topology & Visualizing 1-Manifolds. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_1

Download citation

Publish with us

Policies and ethics