Skip to main content

Reconstructing Cell Complexes From Cross-sections

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2907 Accesses

Abstract

Many interesting segmentations take the form of cell complexes. We present a method to infer a 3D cell complex from of a series of 2D cross-sections. We restrict our attention to the class of complexes whose duals resemble triangulations. This class includes microstructures of polycrystalline materials, as well as other cellular structures found in nature. Given a prescribed matching of 2D cells in adjacent cross-sections we produce a 3D complex spanning these sections such that matched 2-cells are contained in the interior of the same 3-cell. The reconstruction method considers only the topological structure of the input. After an initial 3D complex is recovered, the structure is altered to accommodate geometric properties of the dataset. We evaluate the method using ideal, synthetic datasets as well as serial-sectioned micrographs from a sample oftantalum metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Braude, J. Marker, K. Museth, J. Nissanov, and D. Breen. Contour-based surface reconstruction using MPU implicit models. Graphical Models, 69(2):139–157, 2007.

    Article  Google Scholar 

  2. T. Dey, H. Edelsbrunner, S. Guha, and D. Nekhayev. Topology preserving edge contraction. Publ. Inst. Math.(Beograd)(NS), 66(80):23–45, 1999.

    Google Scholar 

  3. S. Dillard, J. Bingert, D. Thoma, and B. Hamann. Construction of Simplified Boundary Surfaces from Serial-sectioned Metal Micrographs. IEEE Transactions on Visualization and Computer Graphics, pages 1528–1535, 2007.

    Google Scholar 

  4. A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

    Google Scholar 

  5. E. Holm and C. Battaile. The computer simulation of microstructural evolution. JOM, 53(9):20–23, 2001.

    Article  Google Scholar 

  6. L. Nonato, A. Cuadros-Vargas, R. Minghim, and M. De Oliveira. Beta-connection: Generating a family of models from planar cross sections. ACM Transactions on Graphics (TOG), 24(4):1239–1258, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Dillard, S.E., Thoma, D., Hamann, B. (2011). Reconstructing Cell Complexes From Cross-sections. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_4

Download citation

Publish with us

Policies and ethics