Abstract
The Morse-Smale complex is an effective topology-based representation for identifying, ordering, and selectively removing features in scalar-valued data. Several algorithms are known for its effective computation, however, common problems pose practical challenges for any feature-finding approach using the Morse-Smale complex. We identify these problems and present practical solutions: (1) we identify the cause of spurious critical points due to simulation of simplicity, and present a general technique for solving it; (2) we improve simplification performance by reordering critical point cancellation operations and introducing an efficient data structure for storing the arcs of the complex; (3) we present a practical approach for handling boundary conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4):385–396, 2004.
H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds. In Proc. 19th Ann. Sympos. Comput. Geom., pages 361–370, 2003.
H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30(1):87–107, 2003.
H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph., 9(1):66–104, 1990.
R. Forman. A user’s guide to discrete morse theory, 2001.
A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. A practical approach to morse-smale complex computation: Scalability and generality. IEEE Transactions on Visualization and Computer Graphics, 14(6):1619–1626, 2008.
A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. Topology-based simplification for feature extraction from 3d scalar fields. In Proc. IEEE Conf. Visualization, pages 535–542, 2005.
A. Gyulassy, V. Natarajan, V. Pascucci, P. T. Bremer, and B. Hamann. A topological approach to simplification of three-dimensional scalar fields. IEEE Transactions on Visualization and Computer Graphics (special issue IEEE Visualization 2005), pages 474–484, 2006.
A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 13(6):1440–1447, 2007.
H. King, K. Knudson, and N. Mramor. Generating discrete morse functions from point data. Experimental Mathematics, 14(4):435–444, 2005.
T. Lewiner, H. Lopes, and G. Tavares. Applications of forman’s discrete morse theory to topology visualization and mesh compression. IEEE Transactions on Visualization and Computer Graphics, 10(5):499–508, 2004.
S. Smale. Generalized Poincaré’s conjecture in dimensions greater than four. Ann. of Math., 74:391–406, 1961.
S. Smale. On gradient dynamical systems. Ann. of Math., 74:199–206, 1961.
Acknowledgements
Attila Gyulassy was supported by the Lawrence Scholar Program (LSP). In addition, this research was supported in part by the National Science Foundation, under grant CCF-0702817. We would like to thank the members of the Center for Applied Scientific Computing (CASC), at LLNL, and the members of the Visualization and Computer Graphics Research Group of the Institute for Data Analysis and Visualization (IDAV), at UC Davis. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Gyulassy, A., Bremer, PT., Hamann, B., Pascucci, V. (2011). Practical Considerations in Morse-Smale Complex Computation. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-15014-2_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15013-5
Online ISBN: 978-3-642-15014-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)