Skip to main content

Automatic Classification of Intrapartal Fetal Heart-Rate Recordings – Can It Compete with Experts?

  • Conference paper
Information Technology in Bio- and Medical Informatics, ITBAM 2010 (ITBAM 2010)

Abstract

Fetal heart rate (fHR) is used to evaluate the fetal well-being during the delivery. It provides information of fetal status and allows doctors to detect ongoing hypoxia. Routine clinical evaluation of intrapartal fHR is based on description of macroscopic morphological features of its baseline. In this paper we show, that by using additional features for description of the fHR recordings, we can improve the classification accuracy. Additionally since results of automatic signal evaluation are easily reproducible we can objectify the whole process, thus enabling us to focus on the underlying reasons for high expert inter-observer and intra-observer variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Steer, P.J.: Has electronic fetal heart rate monitoring made a difference. Seminars in Fetal and Neonatal Medicine 13, 2–7 (2008)

    Article  Google Scholar 

  2. FIGO. Guidelines for the use of fetal monitoring. International Journal of Gynecology & Obstetrics 25, 159–167 (1986)

    Google Scholar 

  3. Blix, E., Sviggum, O., Koss, K.S., Oian, P.: Inter-observer variation in assessment of 845 labour admission tests: comparison between midwives and obstetricians in the clinical setting and two experts. In: BJOG, Nordic School of Public Health, Gothenburg, Sweden, vol. 110(1), pp. 1–5 (2003)

    Google Scholar 

  4. Bernardes, J., Costa-Pereira, A., de Campos, D.A., van Geijn, H.P., Pereira-Leite, L.: Evaluation of interobserver agreement of cardiotocograms. Int. J. Gynaecol Obstet, epartamento de Ginecologia e Obstetrícia, Hospital de S. Jo?o, Faculdade de Medicina do Porto, Oporto, Portugal 57(1), 33–37 (1997)

    Google Scholar 

  5. Bernardes, J., Moura, C., de Sa, J.P., Leite, L.P.: The Porto system for automated cardiotocographic signal analysis. J. Perinat. Med. 19(1-2), 61–65 (1991)

    Article  Google Scholar 

  6. Guijarro-Berdinas, B., Alonso-Betanzos, A., Fontenla-Romero, O.: Intelligent analysis and pattern recognition in ctg signals using a tightly coupled hybrid system. Artif. Intell. 136, 1–27 (2002)

    Article  MATH  Google Scholar 

  7. Magenes, G., Pedrinazzi, L., Signorini, M.G.: Identification of fetal sufferance Intepartum through a multiparametric analysis and a support vector machine. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., Dipartimento di Informatica e Sistemistica, Pavia Univ., Italy, vol. 1, pp. 462–465 (2004)

    Google Scholar 

  8. Goncalves, H., Rocha, A.P., Ayres-de Campos, D., Bernardes, J.: Linear and nonlinear fetal heart rate analysis of normal and acidemic fetuses in the minutes preceding delivery. Med. Bio. Eng. Comput. 44, 847–855 (2006)

    Article  Google Scholar 

  9. Laar, J., Porath, M.M., Peters, C.H.L., Oei, S.G.: Spectral analysis of fetal heart rate variability for fetal surveillance: review of the literature. Acta Obstet. Gynecol. Scand. 87(3), 300–306 (2008)

    Article  Google Scholar 

  10. Georgoulas, G., Stylios, C.D., Groumpos, P.P.: Feature extraction and classification of fetal heart rate using wavelet analysis and support vector machines. International Journal on Artificial Intelligence Tools 15, 411–432 (2005)

    Article  Google Scholar 

  11. Hopkins, P., Outram, N., Löfgren, N., Ifeachor, E.C., Rosén, K.G.: A comparative study of fetal heart rate variability analysis techniques. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 1784–1787 (2006)

    Google Scholar 

  12. Georgoulas, G., Stylios, C.D., Groumpos, P.P.: Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. Biomed. Eng., Laboratory for Automation and Robotics 53(5), 875–884 (2006)

    Google Scholar 

  13. Sundstrom, A., Rosen, D., Rosen, K.: Fetal surveillance - textbook, Gothenburg

    Google Scholar 

  14. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110, 43–50 (1997)

    Article  MATH  Google Scholar 

  15. Task-Force. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Eur. Heart J. 17(3), 354–381 (1996)

    Google Scholar 

  16. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Physical Review A 33(2), 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Esteller, R., Vachtsevanos, G., Echauz, J., Lilt, B.: A comparison of fractal dimension algorithms using synthetic and experimental data. In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, ISCAS 1999, vol. 3, pp. 199–202 (1999)

    Google Scholar 

  18. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  19. Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos 5(1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  20. Pincus, S.M., Viscarello, R.R.: Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79(2), 249–255 (1992)

    Google Scholar 

  21. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information Theory, IT 22(1), 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ferrario, M., Signorini, M.G., Cerutti, S.: Complexity analysis of 24 hours heart rate variability

    Google Scholar 

  23. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chudáček, V. et al. (2010). Automatic Classification of Intrapartal Fetal Heart-Rate Recordings – Can It Compete with Experts?. In: Khuri, S., Lhotská, L., Pisanti, N. (eds) Information Technology in Bio- and Medical Informatics, ITBAM 2010. ITBAM 2010. Lecture Notes in Computer Science, vol 6266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15020-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15020-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15019-7

  • Online ISBN: 978-3-642-15020-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics