arXiv:1003.5777v1 [cs.SE] 30 Mar 2010

Specifying Reusable Components

Nadia Polikarpova Carlo A. Furia Bertrand Meyer

Abstract

Reusable software components need well-defined interfaizgsously and
completely documented features, and a design amenableédathse and to for-
mal verification; all these requirements call for expresspecifications. This
paper outlines a rigorous foundationrtdel-based contracta methodology to
equip classes with expressive contracts supporting theaecdesign, implemen-
tation, and formal verification of reusable components. ®&ldzhsed contracts
conservatively extend the classic Design by Contract bynsieéexpressive mod-
els based on mathematical notions, which underpin the ggeaftfinitions of no-
tions such as abstract equivalence and specification ctenples. Preliminary
experiments applying model-based contracts to librafielata structures demon-
strate the versatility of the methodology and suggest tren introduce rigorous
notions, but still intuitive and natural to use in practice.

1 Introduction

The case for precise software specifications involves aéwall-known arguments; in

particular, specifications help understand the probleroredbuilding a solution, and

they are necessary for verifying implementations. In theeaaf a library of reusable
software components, precise specifications have angpipdication, essential to the
effective use of the library: providing client programmerh a description of the

interface (the API). To help produce such specificationsj@reby Contract techniques
[18] let authors of reusable modules equip them with spextiba elements known

as “contracts” (routine preconditions and postconditj@tesss invariants), which tools
from the development environment can extract to producaaatically generated API

documentation.

While specifications primarily intended for purposes ofitian component devel-
opment typically use a specification language based on mmathes, approaches using
Design by Contract, such as Eiffel [18], JML |17] and Speckrily instead on an
assertion language embedded in the programming languaggiffél, for example,
contracts are expressed through assertions built out dattgpiages Boolean expres-
sions, with a few extensions; the most notable of these sikies is theold notation
which makes it possible to express postconditions as ptiepaf both the starting and
ending states of the computation. This approach adds disaynti element to the list
of benefits of precise specifications: being expressed irptbgramming language,
contracts can bevaluatedduring execution. (We will use the term “executable asser-
tions”, although this is really about evaluation rathemtlexecution; another possible

http://arxiv.org/abs/1003.5777v1

term is “embedded” assertion, to emphasize that the assdatguage is included in
the programming language.) As a consequence, contractsfeayed a major role in
testing especially for Eiffel, where an advanced testing envirentnAutoTest([[19],

takes advantage of contracts for automatic test generatiore generally, Eiffel pro-
grammers routinely rely on run-time contract evaluationtésting and debugging.

Another practical benefit of the approach is teachabilitpgpammers already un-
derstand Boolean expressions, and do not need to learn eateppecification lan-
guage. These practical advantages of executable assehame traditionally come
at a price: expressiveness. Unlike a full-fledged specifindanguage (such as B
[1], based on set theory), an assertion language embeda@garogramming language
makes it harder to express the full specification of prograntscomponents. As a typ-
ical example, the postcondition of a “push” operation oraglsin the existing standard
Eiffel library expresses that the new top of the stack wilthe item just pushed, and
that the number of items will have been increased by onet bygically does not state,
except in the form of a comment, that thther elements of the stack are unaffected.
This example is typical: an extensive study [3] indicatext th practice Eiffel classes
contain many contracts, but (see alsol [21]) they cover oaly pf the programmers
informal understanding of the specification.

Can we retain all the advanced benefits of specificationsritiqular support com-
pleteness of specifications and static checks (includingfg), while retaining an ex-
ecutable specification language that can also be used timg@sThe present work
proposes a positive answer, based on the ideacafels

Specifications, in this approach, do not require any spéamgjuage beyond the
classical assertion language embedded in the programmimyméage. Instead, they
rely on a methodological principle: associate with evesslone or morenodel
gueriesspecifying the semantics of the associated objects thrstagtuard mathemat-
ical concepts, represented by instancemoflel classesThe model classes are also
expressed in the programming language, but they are justtdiianslations of math-
ematical concepts (such as sets, functions, relationy ¢tey have no operational
properties (attributes (fields), assignment, side effquscedures and such), so that
the corresponding objects are immutable. The model quefi@shormal (non-model)
class are expressed in terms of such model classes; for éxamsfack class can have
a model quergequenc®f the model typeSEQUENCE associating a sequence with every
stack (the sequence of stack items, starting for exampie fhe top). It is then pos-
sible to specify operations of the class through their ¢ffecthe model queries; for
example the push operations yields a new stack whagencejuery yields a sequence
starting with the element being pushed and continuing viighalements of the origi-
nal sequence. In this example the class only has one modsl (geguence), but any
number of model queries is possible; the model queries caxisgng features of the
class, or new features added for the sole purpose of speidfica

This idea ofmodel-based contracis not new; previous own work [24, 23] and,
among others, JIMIL[17] introduced the concept and proviikeddies of model classes.
Developing arigorous and systematic approach to model-based spedditsis the
main contribution of the present paper. Secfiibn 3 shows hevinterface of a class de-
fines unambiguously a notion abstract spacewhich in turn determines the model of
the class; programmers can easily introduce model classkiadel queries in accor-

dance with this model. Sectibh 3 also outlines precise dinigieto write contracts that
refer to the chosen model queries. The guidelines come vdtfiaition of complete-
nessof the postcondition of a feature with respect to the clasdehdr he definition is
formal, yet amenable to informal reasoning; it is practicaseful in assessing whether
a contract is sufficiently detailed or is likely omitting serimportant details of what
the feature achieves.

Section4 describes two case studies that used this metipdfdr model-based
specifications to develop libraries of data structures withng contracts. The results
achieved show that the methodology is successful in déligexell-designed com-
ponents with expressive — usually complete — specificatidvisst advantages of
standard Design by Contract are retained, such as conignéprogrammers and
ease of reasoning, while pushing a more accurate evaluattidesign choices and an
impeccable definition of interfaces. The executability afshmodel classes even sup-
ports the reuse of Eiffel's automated contract-basedngstifrastructure with more
expressive contracts, which boosts the effectiveness toiheated testing in finding
defects in developed software.

2 Motivation and overview

Design by Contract (DbC) is a discipline of analysis, desigiplementation, and man-
agement of software. It relies on the fundamental idea ohdgfithe role of any com-
ponent in the system in terms otantractthat formalizes the obligations and benefits
of that component relative to the rest of the system. Coalyethe contract is as a
collection of assertiongfeconditionspostconditionsandinvariantg that constitute
the module'sspecification

2.1 Some limitations of Design by Contract

To emphasize the seamless connection that must exist bespeeification and im-
plementation, and to make writing contracts palatable éopfogrammer, DbC uses
the same notation for expressions in the implementatioriratite specification. This
choice successfully encourages programmers to write actstf3]. On the other hand,
it also restricts the assertions that can be expressed —abcdin be expressed easily.
This restriction ultimately impedes the formalization amdlification of full functional
correctness and even limits the scope of application of iv@hie correct design of an
implementation. Let us demonstrate this on a couple of elesfppm the EiffelBase
library [9].

Lines 1-14 in Tabl€]l show a portion of classKeD_LIST, implementing a dy-
namic list. Features (membersuntandindex record respectively the number of ele-
ments stored in the list and the current position of the ivdtecursor. Routin@utright
inserts an elementto the right of the current position of the cursor, withoutwimg
it. The postcondition of the routine (clausesure asserts that inserting an element
incrementsounter by one but does not changelex This is correct, but it does not
capture the gist of the semantics of insertion: the listraftsertion is obtained by all

2 classLINKED _LIST [G]

16 duplicate(n: INTEGER): LINKED _LIST

3 count INTEGER —— Number of elements ; . - .
B 17 — — Copy of sublist of length ‘n’ beginning at current position
5 index INTEGER — — Current cursor position 18 require n > 0do ... ensure Resulindex=0 end
19end
6
. 20
7 putright (v: G)
8 —— Add ‘v’ to the right of cursor. 2 clasust'EOBé_!Ek[GK,)K]
9 require 0 <index< count P Tl W W
1 do 23 —— _Assoqate value ‘v’ with key ‘k’.
u ensﬁ.ré 24 require valid_key(k)
12 count= old count+ 1 % deferred end
13 index= old index %
27end
14 end

Table 1: Snippets from the EiffelBase classegep_LisT (lines 1-17) andasLE (lines
19-25).

the elements that were in the list up to positiafex followed by element and then by
all elements that were to the right iafiex

Expressing such complex facts is impossible or exceedicmyiyplicated with the
standard assertion language; as a result most specifisaieimcompletan the sense
that they fail to capture precisely the functional semantitroutines. Weak specifi-
cations hinder formal verification in two ways. First, edigtiing weak postconditions
is simple, but confidence in the full functional correctne$s verified routine will
be low: the quality of specifications limits the value of ¥igation. Second, weak
contracts affect negatively verification modularity: iispossible to establish what a
routiner achieves, ifr calls another routine whose contract is not strong enough to
document its effect withim precisely.

Weak assertions limit the potential of many other applaatiof DbC. Specifica-
tions, for example, should document the abstract semamttioperations in deferred
classes (classes without an implementation). Weak cdatcannot fully do so; as a
result, programmers have fewer safeguards to preventsistencies in the design and
fewer chances to make deferred classes useful to clier@aghrpolymorphism and
dynamic dispatching.

Featureput in classTABLE (lines 16—19 in Tablg]1) is an example of such a phe-
nomenon. It is unclear how to express the abstract semaottips with standard
contracts. In particular, the absence of a postconditiaveg it undefined what should
happen when an element is inserted with a key that is alresgbcated to some other
element: shoulg@ut replace the previous element with the new one or cancel #e-in
tion of the new element? Indeed, some heirsaHLE implementput with a replace-
ment semantics (such as classRAy), while others disallow overriding of preexisting
mappings withput (such as classAsH_TABLE). Some classes (includinghnSH_TABLE)
even introduce another featutgce that implements the replacement semantics. This
obscures the behavior of routines to clients and makes #tourable whethegut has
been introduced at the right point in the inheritance hidrar

2 note model sequencendex

3 classLINKED _LIST [G]

4 sequenceMML _SEQUENCHG]
— — Sequence of elements

do ... end 24 note model map

25 classTABLE [G, K]

26 map MML _MAP [G, K]

27 — — Map of keys to values

28 deferred end

29

30 put(v: G; ki K)

31 — — Associate value ‘v’ with key ‘k’.
32 require mapdomain[k]

count INTEGER — — Number of elements
ensure Result= sequenceountend

11 index INTEGER —— Current cursor position

13 putright (v: G)

14 —— Add ‘v’ to the right of cursor. 3 deferred

15 require 0 <index< count ” ensure

16 do ... 35 map= old mapreplacedat (k, v)
17 ensure) 6 end

18 sequence old (sequencéront (indey s7end

19 .extendedv) + sequencéail (index+ 1))

20 index= old index

21 end

22 end

Table 2: Classesnkep LisT (left) andTasLe (right) with model-based contracts.

2.2 Enhancing Design by Contract with models

This paper presents an extension of DbC that addressesatesraintioned problems.
The extension conservatively enhances DbC withdel classesimmutable classes
representing mathematical concepts that provide for mepeessive specifications.
Wrapping mathematical entities with classes supporteridontracts without need
to extend the notation, which remains the one familiar togpmonmers as in DbC.
Contracts using model classes are catteatlel-based contracts

Table[2 shows an extensions of the examples in Table 1 witheirmaked con-
tracts.LINKED _LIST is augmented with a quesgquencdhat returns an instance of class
MML _SEQUENCE a model class representing a mathematical sequence oéreigmof
homogeneous type; the implementation, omitted for brebimyids sequenceaccording
to the actual content of the list. The meta-annotatian declares the two features
sequenceandindexasmodel Of the class; every contract will rely on the abstractiornythe
provide. In particular, the postcondition pftright can precisely describe the effect of
the routine: the newequencds the concatenation of th#l sequencalp toindex, extended
with elementy, with the tail of theold sequencestarting afterindex We can assert that
the new postcondition — including the clause abiatdx— is completewith respect
to the model of the class, because it completely defines fieetedf putright on the
abstract model. This notion of completeness is a powerfidgyto writing accurate
specification that makes for well-defined interfaces andiabte classes.

The mathematical notion ofraap— encapsulated by the model clasgL _map —
is the natural model for the classBLE. Featuremapcannot have an implementation
yet, becauseaBLE is deferred and hence it is not committed to any representafi
data. Nonetheless, the mere availability of a model clappatis complex specifica-
tions already at this abstract level. In particular, wdta complete postcondition for
routine put requires to commit to a specific semantics for insertion. @&kemple in

Table[2 chooses the replacement semantics; corresponditigheirs of TABLE will
have to conform to this semantics, guaranteeing a cohexagérofrABLE throughout
the class hierarchy.

3 Foundations of model-based contracts

3.1 Specifying classes with models

This subsection describes a rigorous approach to equippasges with expressive
contracts.

3.1.1 Interfaces, references, and objects.

The definitions of abstract objects and models (introduceithé remainder) rely on
the following simple assumptions about classes. A clédsdenotes a collection of
objects. Expressions such @s C defineo as a reference to an object of cl&ssthe
notation is overloaded for conciseness, so that occursanfcecan denote the object
it references or the reference itself, according to theedntEach clasg” defines
a notion ofreferenceequality =~ and of object equality =¢; both are equivalence
relations. Two objects;, o, : C of classC can bereference equalwritteno; =¢ 02)
or object equalwritten o; =¢ 02). Reference equality is meant to capture whether
01 ando, are aliases for the same physical object, whereas objeetiBgis meant
to hold for (possibly) physically distinct objects with tisame actual content. The
following discussion is however independent of the palticahoice of reference and
object equality.

The principle of information hiding prescribes that eadhssl define an interface:
the set of its publicly accessible features|[18]. It is gooakcfice to partition features
into queries and commands; queries are functions of thecbbjate, whereas com-
mands modify the object state but do not return any valye= Q¢ U Mo denotes the
interface of a clas§’ partitioned in querie§)¢ and commandaZ- [It is convenient
to partition all queries intwalue-boundjueries@)?, andreference-boundueriesQy..
Value-bound queries should create fresh objects to returmqre generally objects
that were unknown to the client before calling the query)ewas reference-bound
queries give the client direct access, through a referdngearts of the target object
or of the query arguments. In other words, clients of a vdlaend query are insensi-
tive to whether they received a unique fresh object or theyjuat sharing a reference
to a previously existing one. The chosen partitioning betwealue-bound and refer-
ence bound queries does not affect the following discussitimough it is usually quite
natural to adhere to this informal distinction when degsigra class.

Example 1. Queryitem (Table[3) is reference-bound, as the client receives theg ver
same physical object that was earlier inserted in the lister@duplicate (Table[3) is
instead value-bound, as it returns a copy of a portion ofithe |

1Constructors need no special treatment and can be modetpetdss returning new objects.

The classification in value-bound and reference-bounchest@aturally taargu-
mentsof features: if the feature does not rely on having a direfetremce to the actual
argument (as opposed to a copy of it), the argument is vabuerdly otherwise, it is
reference-bound.

3.1.2 Abstract object space.

The interface ¢ induces an equivalence relatisr: over objects of clas§' calledab-
stract equalityand defined as followsi; =¢ 0, holds foroy, 0o : C iff for any appli-
cable sequence of calls to commands m., ... € M5 and a query; € Q¢ returning
objects of some clasg, the qualified call®;.mq;01.m2;--- andos.my;00.mo; - - -
(with identical actual arguments where appropriate) dsivando, in states such that
if ¢ is reference-bound then.q =r 02.q, and ifg is value-bound then;.q =1 0s.q.
Intuitively, two objects are equivalent with respectte if a client cannot distinguish
them by any sequence of calls to public features.

Abstract equality defines abstract object spacehe quotient setlc = C/ =<¢
of C (as a set of objects) by. As a consequence, two objects are equivalent w.r.t.
= iff they have the samabstract (object) stateAny concrete set that is isomorphic
to Ac is called amodelof C.

Example 2. A queueclass typically consists of the querigsn, count andempty—
returning the next element to be dequeued, the total nunfledements in the queue,
and a fresh empty queue — and the commamndsndremove— to enqueue an element
and dequeue the next elementrethovewere not part of the interface, any element in
the queue but the least recently inserted one would be isaitxte to clients; the model
of such a class would then be a pair of tyfNex G recording the current number of
elements and the latest enqueued element of genericdypacludingremovein the
interface, as it usually is the case for queues, allows tignread the whole sequence
of enqueued elements. Hence, two queues with full intesface indistinguishable iff
they have the very same sequence of elements; the model afuee quass with full
interface is then an abstract sequence of t¥pe

As all the following examples will suggest, the most natalesign choice imple-
ments object equality to have the same semantics as ateaadity. Notice, however,
that complying or not with this rule of thumb does not afféxet soundness of the defi-
nitions in the present paper, nor does introduce circigarin the definition of abstract
equality.

3.1.3 Model classes.

The model of a classC is expressed as a collectiob: = D¢,DZ,

..., D% of model classd$ Model classes are immutable classes designed for spec-
ification purposes; essentially, they are wrappers of dgsly defined mathematical
entities: elementary sorts such as Booleans, integersphjedt references, as well

as more complex structures such as sets, bags, relatiops, @rad sequences. The

2The model may include the same class multiple times

MML library [23] provides a variety of such model classesuipped with features
that correspond to common operations on the mathematicettste they represent,
including first-order quantification. For example, classL _SET models sets of ele-
ments of homogeneous type; it includes features for omeratsuch as membership
and quantification over all elements of the set that satisfgreain predicate (passed as
a function object).

Example 3. As we discussed in Examplé 2, a sequence is a suitable modetifeue;

it can be represented by clagsiL _SEQUENCE To represent the model of a linked
list with internal cursor, we can combine a sequence of clags SEQUENCEwith an
element of class\TEGER to represent the position of the cursor; this assumes that no
information about the pointer structure of the list in thajés accessible through the
interface of the class.

3.1.4 Model queries.

Every clasg” provides a collection of publimodel querieSc = s¢., sZ,. .., sk, one
for each component model classin-. Each model query’, returns an instance of
the corresponding model clag¥. that represents the current value of thiln com-
ponent of the model. (Informally, the values returned by elaplieries are analogues
to the coefficients expressing the abstract state as a catiyirof independent ba-
sis vectors spanning the whole space). Since the abstraitaivate should always
be defined between operations and should not depend on teeo$tany other ob-
ject, model queries are typically argumentless and witlpwatondition. Clauses in
the class invariant can constrain the values of the moddiegiéo match precisely
the abstract states of the model. For example, model qguesyINTEGER returning
the cursor position of theiNKeD _LIST in Table[1 should be constrained by an invari-
ant clause <index< sequenceount+ 1. A meta-annotatiomote modet s}, s2,, . .. lists all
model queries of the class (see TdHle 2 for an example).

Programmers can add model queries incrementally to classetoped with DbC.
In fact, it is likely that some model queries are already usethe implementation
before models are added explicitly; for example featutex of classLINKED _LIST (Ta-
ble[2). Additional model queries return the remaining comgnis of the model for
specification purposes, suchsaguencén LINKED _LIST.

Our approach prefers to implement new model queries asifunrsctather than
attributes. This choice facilitates a purely descriptigage of references to model
queries in specifications. In other words, instead of audgimgmoutine bodies with
bookkeeping instructions that update model attributestime postconditions are ex-
tended with clauses that describe the new value returneddolehgueries in terms of
the old one. This has the advantage of enforcing a cleansiativoetween implemen-
tation and specification, while better modularizing théelaat routine level (properties
of model attributes are typically gathered in the classriave). A meta-annotation of
the formnote specificationtags model queries that are not meant for use in implementa-
tion; runtime checking of annotations calling these modedrigs can be disabled if
performance is a concern.

35 note model sequencandex

51 duplicate(n: INTEGER): LINKED _LIST [G]

35 classLINKED _LIST [G] 52 —— Acopy of at most'n’ elements
37 53 —— Startlng at cursor pOSItIOﬂ
38 has(v: G): BOOLEAN 5 (rjeoqwre nzo0

39
40
4
42
43
44
45
46
47
48
49

item G

. . 55
- WP
w Does listinclude ‘v'? (Reference equality) 5 ensure

ensure Result iffsequencas(v) end 57 Resultjseque_ncs sequencénterval (index index+n — 1)
58 Resultindex= 0
59 end

—— Value at cursor position

. 61 makeem
require Pty

sequencelomain[indeX 62 —— Createanempty list _
63 ensuresequencés_emptyand index= 0
ensure o end

Result=sequencégindey

65 .
end

66 end

Table 3: Snippets of clagsikep LisT with model-based contracts (continued from Ta-

ble[2).

3.1.5 Model-based contracts.

Let C be a class equipped with model queries whose interfgcis partitioned into
queriesQ¢ and commandd/c. Q¢ now includes the model queri€s: C Q¢
together with other querieBc = Q¢ \ Sc (note that this does not change the abstract
space according to the definitions given at the beginnindgnefsection). Queries in
R¢ are calledstandard queriesThe rest of the section contains guidelines to writing
model-based contracts for commanddiia: and queries iR¢.

e The preconditionof a feature is a constraint on the abstract values of itsevalu

bound arguments and, possibly, on the actual referencés teference-bound
arguments. The target object, in particular, can be coresitien implicit value-
bound argument. For example, the preconditiegindomain[k] of featureput in
classTABLE (Table[2), refers to the abstract state of the target objgetn by
the model querynap and to its actual reference-bound argument

e Postconditionshould refer to abstract states only through model quefibs

emphasizes the components of the abstract state that acfeaddlifies or relies
upon, which in turn facilitates understanding and reaspoimthe semantics of
a feature.

e The postcondition of a commandefines a relation between the prestate and

the poststate of its arguments and the target object; peestal poststate refer
respectively to the state before and after executing thencamd. More precisely,
the postcondition mentions only abstract values of itseddaund arguments and
possibly the actual references to its reference-boundaegts; the target object
is considered value-bound both in the prestate and in thistates.

Itis common that a command only affects a few componentssoflistract state
and leaves all the others unchanged. Accordinglycthsed world assumption
is convenient: the value of any model querye S¢ that is not mentioned in

2 note model bag

3classCOLLECTION[G] 16 note modet sequence

4 bag MML _BAG [G] 17 classDISPENSERG]

5 18inherit COLLECTION[G]

6 is_.empty BOOLEAN 19

7 ensure Result= bagis_emptyend 20 sequenceMML _SEQUENCHG]

8 21

9 wipeout 22 invariant

10 ensurebagis_emptyend 23 bagdomain= sequenceange

11 24 bagdomainfor_all (agent(x: G): BOOLEAN
12 put(v: G) 25 bag[X] = sequenc@ccurrencegx))
13 ensurebag= old bagextendedv) end 26 end

Table 4: Snippets of classesLLecTion (left) andpbispenser(right) with model-based
contracts.

3.1.6

the postcondition is assumed not to be modified by the compamnids=old s
were a clause of the postcondition. When the closed worlgnagson is wrong,
explicit clauses in the postcondition should establishcibreect semantics. If a
command may modify the value of a model quetyut the actual new value is
not known precisely anglis not mentioned in other clauses of the postcondition,
add a clauseslevant(s) to the postcondition of the command (in terms of imple-
mentation,relevantis just a constant function that returns true). If a command
does not affect the value a model queiyut the postcondition of the command
mentionss, add a clause= old s to the postcondition of the command.

Thepostcondition of a querglefines the result as a function of its arguments and
the target object (with the usual discipline of mentioningyoabstract values

of value-bound arguments and target object and possiblyabotferences to
reference-bound arguments). Value-bound queries defsalttract state of
the result, whereas reference-bound queries describetaal aeference to it.
For example, compare the postcondition of the referencewbqueryitem from
classLINKED _LIST (Table[3), which precisely defines a reference to the retlirne
list element, with the postcondition of the value-boundrgueplicatein the same
class, which specifies the abstract state of the returnied lis

A clear-cut separation between queries and commands assiosteact purity
for all queries: executing a query leaves the abstract sfatiéits arguments and
of the target object unchanged.

Inheritance and model-based contracts.

A classC’ that inherits from a parent claésmay or may not re-us€’s model queries
to represent its own abstract state. For every model query S¢ of the parent class
that is not among the heir's model querigs., C’ should provide dinking invari-
ant to guarantee consistency in the inheritance hierarchy. lihkéng invariant is a
formula that defines the value returned &y in terms of the values returned by the

10

model queries$ ¢ of the inheriting class. This guarantees that the new maedetieed
a specialization of the previous model, in accordance wWithriotion of sub-typing
inheritance.

A properly defined linking invariant ensures that every iitiee feature has a defi-
nite semantics in terms of the new model. However, the nevas&os may be weaker
in that a command whose contract in the parent class chametdt as a function,
becomes characterized as a relation in the child classighiacompleteness is intro-
duced (see Sectidn 3.2).

Example 4. Consider classoLLECTION in Table[4, a generic container of elements
whose model is a bag. ClasssPENSERinherits fromCOLLECTION and specializes it
by introducing a notion of insertion order; correspondyngk model is a sequence.
The linking invariant ofbisPENSERdefines the value of the inherited featuxg in
terms of the new featurequencethe domain obag coincides with the range géquence
, and the number of occurrences of any elem@ntbag correspond to the number of
occurrences of the same elemens$édfuence

The linking invariant ensures that the semantics of featigremptyand wipe outis
unambiguously defined alsoimsPENSER On the other hand, the model-based contract
of commandbutin coLLECTION and the linking invariant are insufficient to characterize
the effects ofput in DISPENSER as the position within the sequence where the new
elementis inserted is irrelevant for the bag.

3.2 Completeness of contracts

The notion ofcompleteneskr the specification of a class gives an indication of how
accurate are the contracts of that class with respect to tteinAn incomplete con-
tract does not fully capture the effects of a feature, sutjggthat the contract may be
more detailed or, less commonly, that the model of the clasme-hence its interface
— is not abstract enough. Unlike the notionsaffficient completenegdsr algebraic
specifications[[111] — that serves a similar purpose —, theqredefinition of com-
pleteness is structurally similar to the concept of congless for a set of axioms, and
a dual notion of soundness complements it. For simplidiiy following definitions do
not mention feature arguments; introducing them is, howeweatine.

3.2.1 Soundness and completeness of a model-based contract

Let f be a feature of clasS. The specification of denotes two predicatgsre ; and
post;. pre, represents the set of objects of classhat satisfy the precondition. If
[is a query returning object of cla¥s post ; has signaturé€’ x 7" and denotes the
pairs of target and returned objects. flis a commandpost ; has signaturé’ x C
and denotes the pairs of target objects before and afteugmgthe comman@.

e The preconditionof a featuref (query or command) isoundiff: for every
01,02 : C such thabl ¢ 02 itis pre; (01) =4 prey (OQ)B

3These definitions imply the absence of side-effects in ewimlg assertions.
4Completeness of preconditions is not an interesting natimhhence it is not defined.

11

e Thepostcondition of a command is soundiff: for every o, o}, o, : C' such that
pre,, (o) ando} =<¢ 0} itis post,, (0, 0}) < post,, (0, 0h).
The postcondition of a command is completeff: for every o, o}, 0} : C such
thatpre,, (0), post,, (0,0}), andpost,,, (0, 05) itis o} <¢ 0}.

e The postcondition of a value-bound quegyis soundiff: for every o : C' and
ty,t2 : T such thapre, (o) andt, <7 ty itis post,(o,11) < post,(o,t2).

The postcondition of a value-bound queyys completdff: for every o : C' and
t1,ts : T such thapreq(o), post,(o,t1), andpost, (o, t2) itis t1 <7 ta.

e Thepostcondition of a reference-bound queris soundiff: for everyo : C and
ty1,t2 : T such thapre, (o) andt, =7 ty itis post,(o,11) < post,(o,t2).

The postcondition of a reference-bound queris completsff: for everyo : C
andty, to : T such thapreq(o), post, (o, t1), andpost, (o, to) itist1 =r to.

Informally, a sound assertion is one that is consistent thi#motion of equivalence
that is appropriate: sound postconditions of commands aheexound queries do
not distinguish between objects with the same abstraa;statind postconditions of
reference-bound queries do not distinguish between altase

A postcondition is complete if all the pairs of objects thatisfy it are equivalent
(according to the right model of equivalence). This meanstie complete postcon-
dition of a command defines the effects of the command as sematicafunction(as
apposed to a relation) from the prestate to the abstracstatest Similarly, the com-
plete postcondition of a query defines the result &snationof the abstract state of
value-bound arguments and of actual references to refefiemgnd arguments.

Example 5. The contracts of featura@sempty wipeout, andput in classCOLLECTION
(Table[4) are sound and complete; the postconditiopupfin particular, is complete
as it defines the new value o#fg uniquely. In the heir classISPENSER however,

the inherited postcondition giuit becomes incomplete: the linking invariant does not
uniquely definesequencdrom bag, hence inequivalent sequences (for example, one with
vinserted at the beginning and another one wiglhthe end) satisfy the postcondition.

3.2.2 Soundness and completeness in practice.

As the previous example suggests, reasoning informally +pbecisely — about

soundness and completeness of model-based contracteis stfaightforward and

intuitive, especially if the guidelines of Sectibn 3.1 haaen followed. Complete-

ness captures the uniqueness of the (abstract) statelmkzbbyi a postcondition, hence
query postconditions in the formesult=exp(s, a) Or Results=exp(s,) and command

postconditions in the form= exp(old s, a) — Whereexpis a side-effect free expressian,

denotes the value returned by the model query of some arguerata is a reference-

bound argument — are painless to check for completeness.

Spostconditions of argumentless reference-bound quergesivially sound for sensible definitions of
reference equality.

12

Example 6. Consider the following example, from clasgrAY whose model is a
map.

fill (v: G; I, u: INTEGER) —— Put ‘v’ at all positions in [, ‘u’].
require mapdomain[l] and mapdomain[u]
ensuremapdomain= old mapdomain
(map| {MML _INT_SET} [[I, u]]).is_constant(v)
(map| (mapdomain— {MML _INT_SET} [[I, u]])) =
old (map| (mapdomain— {MML _INT_SET} [[I, u]]))

© N o oA~ W N

end

Pre and postconditions are sound because they both refetmnhodel queries, or
functions thereof. The following reasoning shows that thstpondition is also com-
plete: a map is uniquely defined by its domain and by a valuevVery key in the
domain. The first clause of the postcondition defined the domampletely. Then,
let k be any key in the domain. ¥ € [I,] then the second clause definesk=v;
otherwisek ¢ [I,u], and the third clause postulatesgk) unchanged.

Soundness is a mandatory requirement for pre and postaomlih the presence
of model-based contracts, as it boils down to writing castsghat are consistent with
the chosen level of information hiding.

On the other hand, how useful is completeness in practice® is'm, complete-
ness is a valuable yardstick to evaluate whether the cdstaae sufficiently detailed.
This is not enough to guarantee that the contracts are ¢erreand meet the origi-
nal requirements — but the yardstick is serviceable metloaically to focus on what
a routine really achieves and how that is related to the atisinodel. As a result,
inconsistencies in specifications are less likely to ocand the impossibility of sys-
tematically writing complete contracts is a strong indimathat the model is incorrect,
or the implementation is faulty. Either way, a warning isiilge before attempting a
correctness proof.

While complete postconditions should be the norm, therecamarring cases where
incomplete postconditions are unavoidable or even preferdhree major sources of
benign incompleteness are the following.

¢ Inherentlynondeterministic or stochastg&pecifications. For example, a class
for random number generation can use a sequence as modgd, dpecification
should not define the precise content of the sequence unamisty.

e Usage ofinheritanceto factor out common parts of (complete) specifications.
For example, classisPENSERINn Table[4 is a common ancestor 8fack and
QUEUE. If its interface includes feature®m, put andremove its model must be
isomorphic to a sequence. Then, it becomes impossible te adomplete post-
condition forput in DISPENSER the specification ofut cannot define precisely
where an element is added to the sequence; a choice conepaitiblthe seman-
tics of sTack will be incompatible withQuEUE and vice versa.

e Imperfections ininformation hiding For example, classRRAYED_LIST is an
array-based implementation of lists which exports a quesycity returning the
size of the underlying array; this piece of information ieritpart of the model of

13

9type Sequencd =[int] T;

2 note mappedto: "Sequence G” 10function Sequencextended(T) (Sequencd, T)
3 classMML _SEQUENCHG] 11 returns (Sequencd);

4. 12 axiom (V (T) s: Sequencd, xT e {Sequencextende(s, x)
5 extendedx: G): MML _SEQUENCHG]

6 —— Current sequence extended with ‘'x"atthe end 13 Sequencextende@s, X) =s[Sequenceoun(s)+1 := X]);
7 note mappedto: "Sequence.extended(Current, X)” 14 axiom (¥ (T) s Sequencd, x: T o
8
9

do...end 15 {Sequenceoun(Sequencextende@s, x))}
end 16 Sequenceoun(Sequencextendefls, x)) =
17 Sequenceoun(s) +1);

18 ...

Table 5: Snippets from classi _sequence(left) and the corresponding Boogie theory
(right).

the class. Default constructors saacityto an initial fixed value. Their postcon-
ditions, however, do not mention this default value, hehey tare incomplete.
The rationale behind not revealing this information is ttiants should not rely
on the exact size of the array when they invoke the constructo

In all these cases, reasoning about completeness is letily lio improve the under-
standing of the classes and to question constructivelybeces made for interfaces
and inheritance hierarchies.

3.3 \Verification: proofs and runtime checking

This subsection outlines the main ideas behind using mioaséd contracts for verifi-
cation with formal correctness proofs and with runtime &g for automated testing.
Its goal is not to detail any particular proof or testing teicjue, but rather to sketch
how to express the semantics of model-based contractsrmsthindard verification
frameworks.

3.3.1 Proofs.

Theaxiomatictreatment of model classes [4, 238, 6] is quite natural: thesseics of a
model class is defined directly in terms of a theory expresséae underlying proof
language, rather than with “special” contracts. The maproften straightforward,
and has the advantage of reusing theories that are optirfozedffective usage with
the proof engine of choice. In addition, the immutabilithdavalue semantics) of
model classes makes them very similar to mathematicaltetes and facilitates a
straightforward translation into mathematical theories.

In this respect, we are currently developing an accuratgpimgmf model classes
and model-based contracts into Boogie [2]. First, the magpitroduces axiomatic
definitions of MML model classes as Boogie theories; anmmtatin the formnote
mappedto connect MML classes to the corresponding Boogie types. ¥xamele, Table
shows how a portion of theiML _SEQUENCEmModel class translates into a Boogie
theory: a mapping typent] Trepresents sequences of elements of genericttyged

14

a few axioms constrain a functicrequencextendedto return values in accordance with
the MML semantic of featurextended

Then, each model query in a class with model-based contnzaps to a Boogie
function that references a representation of the heap; somens connect the value
returned by the function to other features in the translateds. For example, the
model querysequencdn LINKED _LIST becomesSunction LinkedList. sequencgHeapTyperef)

returns (Sequenceef).

Finally, model-based contracts are translated into Bofwieulas according to
the mappedto annotations in model classes. For example, the postconditause:
sequences old (sequencéront (indexX.extendedv)+ sequencdail (index+ 1)) of putright in
LINKED _LIST (Table2) maps to the Boogie formula:

LinkedList. sequencgHeap Currenf) = Sequenceoncat (Sequencextended(

Sequencdront (LinkedList. sequencgld(Heap, Current),

LinkedList. index(old(Heap, Curreny)), v),

Sequencdail (LinkedList. sequencgold(Heap), Current),
LinkedList. index(old(Heap, Currenf) + 1));

3.3.2 Runtime checking and testing.

Most model classes represdinite mathematical objects, such as sets of finite cardinal-
ity, sequences of finite length, and so on. All these clasze$iave an implementation
of their operations which is executable in finite time; thipgorts the runtime checking
of assertions that reference these model classes.

Testing techniques can leverage runtime checkable cast@éully automate the
testing process: generate objects by randomly callingtogseters and commands;
check the precondition of a routine on the generated objediter out valid inputs
for the routine; execute the routine body on a valid input elmelck the validity of the
postcondition on the result; any postcondition violatioreovalid input is a fault in the
routine.

This approach to contract-based testing has proved extyesfiective at uncov-
ering plenty of bugs in production code [19], hence it is ane#ent “lightweight”
precursor to correctness proofs. Contract-based tedtmgever, is only as good as
the contracts are; the weak postconditions of traditior&CDin particular, leave many
real faults undetected. Runtime checkable model-baseamisttan help in this respect
and boost the effectiveness of contract-based testingdwdging more expressive, and
complete, specifications. Sect[dn 4 describes some testiperiments that support this
claim.

3.3.3 Consistency of tests and proofs.

Using contract-based testing as a precursor to correcpresgs poses the problem
of consistency between two semantics given to model clasgsesuntime semantics
given by an executable implementation and the proof seesgiven by a mapping to
a logical theory. Under reasonable assumptions about #uérn environment, con-
sistency must ensure that a component is proven correctstga model-based speci-
fication if and only if testing the component never detect®#ation of its model-based

15

contracts. Establishing this consistency amounts to pgpthat: (1) the implementa-
tion of each model class is consistent with the mapping o€lass to a logical theory;
and (2) the implementation of each model query satisfiep@sification. Future work
will detail and address these problems.

4 Model-based contracts at work

This section describes experiments in developing modsddbaontracts for real object-
oriented software written in Eiffel. The experiments tdnge non-trivial case studies
based on data-structure libraries (described in Sectinvth the goal of demonstrat-
ing that deploying model-based contracts is feasible tima@cand useful. Sectidn4.2
discusses the successes and limitations highlighted bgxeriments.

4.1 Case studies

The first case study targeted EiffelBasé [9], a library ofeyahpurpose data struc-
tures widely used in Eiffel programs; EiffelBase is reprgaéve of mature Eiffel
code exploiting extensively traditional DbC. We selectedliasses from EiffelBase,
for a total of 304 features (254 of them are public) over mbeg¢ 6700 lines of code.
The 7 classes include 3 widely used container data StriC{RRAY, ARRAYED_LIST,
andLINKED _LIST) and 4 auxiliary classes used by the contain@rssGERINTERVAL,
LINKABLE , ARRAYED_LIST_CURSOR andLINKED _LIST.CURSOR. Our experiments sys-
tematically introduced models and conservatively augetbtite contracts of all public
features in these 7 classes with model-based specifications

The second case study developed EiffelBase2, a new ggnanadse data struc-
ture library. The design of EiffelBase?2 is similar to thatitsf precursor EiffelBase;
EiffelBase2, however, has been developed from the stantexipressive model-based
specifications and with the ultimate goal of proving its fiulhctional correctness —
backward compatibility is not one of its primary aims. Thisplies that EiffelBase2
rediscusses and solves any deficiency and inconsisterioy design of EiffelBase that
impedes achieving full functional correctness or hindeesfull-fledged application of
formal techniques. EiffelBase2 provides containers suchreays, lists, sets, tables,
stacks, queues, and binary trees; iterators to traverse ttantainers; and comparator
objects to parametrize containers with respect to arigguivalence and order rela-
tions on their elements. The current version of EiffelBase2udes 46 classes with
460 features (403 of them are public) totaling about 5808sliof code; these figures
make EiffelBase?2 a library of substantial size with reaifinctionalities. The latest
version of EiffelBase2 is available Bt tp://eiffelbase2.origo.ethz.ch

4.2 Results and discussion

This section addresses the following questions based oexjperience with the two
case studies of EiffelBase and EiffelBase2.

e How many different model classes are needed to write moasddhcontracts?

16

http://eiffelbase2.origo.ethz.ch

2 note mode! set relation
3classSET[G]
4

16 note model map
17 classBINARY _TREE[G]
18

has(v: G): BOOLEAN 1o addroot(v: G)

— — Does this set contain ‘'v'?

5
‘73 ensure 20 —— Add a root with value ‘v’ to an empty tree
_ - . 21 require mapis_.empty
2 elﬁgsult— not (setx relationimageof (v)).is_.empty 2 ensuremapcount= 1 and map[Empty = v
23 end

10
11 set MML _SET[G] —— The set of elements
12 relation: MML _RELATION [G, G]

13 —— Equivalence relation on elements
14 end

25 map MML _MAP [MML _SEQUENCEBOOLEAN], G]
26 —— Map of paths to elements
27end

Table 6: Examples of nonobvious models: classesand sinary TREE from Eiffel-
Base?2.

e How many contracts can be complete?

e Do executable accurate model-based contracts boost cbbaaed testing?

4.2.1 How many model classes?

Model-based contracts for EiffelBase used model classeBdoleans, integers, refer-
ences, (finite) sets, relations, and sequences. EiffetBadditionally required (finite)
maps, bags, and infinite maps and relations for special peg(such as modeling
comparator objects). These figures suggest that a modenatean of well-understood
mathematical models suffices to specify a general-purplosey of data structures.

Determining to what extent this is generalizable to sofevather than libraries
of general-purpose data structures is an open questiorhvideiongs to future work.
Domain-specific software may indeed require complex dorspétific model classes
(e.g., real-valued functions, stochastic variables, distte machines), and applica-
tion software that interacts with a complex environment fp@yess prone to accurate
documentation with models. However, even if writing mobdabked contracts for such
systems proved exceedingly complex, some formal modetjisired if the goal is for-
mal verification. In this sense, focusing model-based emtgron library software is
likely to have a great payoff through extensive reuse: theyntdients of the reusable
components can rely on expressive contracts not only adetbtiocumentation but
also to express their own contracts and interfaces by campanlimited set of well-
understood, highly dependable components.

Another interesting remark is that the correspondencedmtthe limited number
of model classes needed in our experiments and the classestlisse model classes
is far from trivial: data structures are often more complextthe mathematical struc-
tures they implement. Consider, for example, ckssin Tablel6: EiffelBase2 sets are
parameterized with respect to an equivalence relatiorgéndre model ofeTis a pair
of a mathematical set and a relation. Another significantrgta isBINARY _TREE (also
in Table[®): instead of introducing a new model class fordreegraphsBINARY _TREE

17

2 mergeright (other. LINKED _LIST [G])
—— Merge ‘other’ into current list after cursor position. Dotmoove cursor. Empty ‘other’.
do

otherfirst element= otherfirst element other.count:= other.count; otherwipe.out
if beforethen first.element= other first. element active:= first.element
else... end
9 count:= count+ other.count
10 ensure
11 — — Original contract
12 count= old count+ old other.count; index= old index; otheris_empty
13 —— Model based contract
14 sequence old (sequencéront (indeX + othersequence sequencgail (index+ 1))
15 end

Table 7: Faulty routineéergeright from class.iNKED LIST.

concisely represents a tree as a map of paths to values; tthel ofaa path is in turn a
sequence of Booleans.

4.2.2 How many complete contracts?

Reasoning informally, but rigorously, about the complesmnof postconditions —
along the lines of Sectidn 3.2 — proved to be straightforvil@lir experiments. Only
18 (7%) out of 254 public features in EiffelBase with modekbd contracts and 17
(4%) out of 403 public features in EiffelBase2 have incontgf@stconditions. All of
them are examples of “intrinsic” incompleteness mentioatetthe end of Sectidn 3.2;
EiffelBase2, in particular, was designed trying to minienihe number of features with
intrinsically incomplete postconditions.

These results indicate that model-based contracts madasiifie to write system-
atically complete contracts; in most cases this was evettively straightforward to
achieve. Unsurprisingly, using model-based contractsidtizally increases the com-
pleteness of contracts in comparison with standard DbCekample, 42 (66%) out of
64 public features of classsT in the original version of EiffelBase (without model-
based contracts) have incomplete postconditions, inotua0 features (31%) without
any postcondition.

4.2.3 Contract-based testing with model-based contracts.

The standard EiffelBase library has been in use for manysyaad has been exten-
sively tested, both manually and automatically. Are thereggive contracts based on
models enough to boost automated testing finding new, sbbte? While prelimi-
nary, our experiments seem to answer in the affirmative. yipglthe AutoTest testing
framework [19] on EiffelBase with model-based contracts30 minutes discovered
3 faults; none of them would have been detectable with stantantracts. Running
these tests did not require any modification to AutoTest odeholasses, because the
latter include an executable implementation.

The 3 faults reveal subtle mistakes that have gone unddteotar. For example,
consider the implementation of routimergeright in Table[T; the routine merges a linked

18

list other into the current linked list at the cursor position by modify references in
the chain of elements. Thien branch of ther statement (line 6) deals with the special
case where the cursor in the current lisbésrethe first element; in this case the first
element of the current listifst elemen} will point directly to the first element of the
other list ptherfirstelemen}. This is not sufficient, as the routine should also link thd e
of the other list to the front of the current one, otherwidesldments in the current
list become inaccessible. The original contract does ntetatiehis fault; the clause
count= old count+ old othercountis in particular satisfied asuntis updated anyway (line
8), but its value does not reflect the actual content of theligwOn the contrary, the
complete model-based contract (line 13) specifies theeesipnfiguration of the list
after executing the command, which leads to easily detgdhia error.

5 Related work

Every fully formal specification ultimately boils down to aathematical model, and
the research on formal modeling and analysis is so exteasg@iverse that it cannot
be summarized concisely. This section focuses on a few rapjmoaches to the formal
specification of object-oriented abstract data types thhapta stance similar to that of
the present paper: using highly expressive mathematicdetageared towards the
full functional correctness specification (and verificajiof complex data structures.

Hoare pioneered the usage of mathematical models to defingrame correctness
of data type implementations [13]. This idea spawned mulgiee work, which can
be roughly partitioned in three major lines: algebraic tiotes, descriptive notations,
and design-by-contract approaches. The following sulzsecshortly summarize the
main features of each of these techniques; then, Sdctibdesetibes the approaches
based on mathematical models that are closest to the piegeert

5.1 Algebraic notations

Algebraic notations formalize classes in terms of (unjmteted) functions and axioms
that describe the mutual relationship among the functidis. example, the axiom
s.insert(z).member_of () = True defines the mutual semantics of the operations
insert andmember_of of a set data type. The most influential work in algebraic spec
fications is arguably Guttag and Horning’s [11] and Gougea.&st[10], which gave a
foundation to much derivative work. The former was also ma@detical in the Larch
project [12], and introduced a notion ocbmpletenesthat differs from the one of the
present paper (see Sectlonl3.2), and applies to whole typesingle features.

Algebraic notations emphasize the calculational aspe& gpecification. This
makes them very effective notations to formalize and vetidya types at a high level
of abstraction. In particular, the close connection betweeriting systems |7] and al-
gebraic definitions enables, in many practical cases, tteerated or semi-automated
verification of consistency and completeness [11] requénaisiof abstract specifica-
tions. The algebraic approach, on the other hand, does tegfrate as well with real
programming languages to document implementations inahre 6f pre and postcon-
ditions of single operations.

19

5.2 Descriptive notations

Descriptive notations formalize classes in terms of simiylees — ultimately grounded
in simple mathematical models such as sets and relationsd-epgrations defined as
input/output relations (that is, pre and postconditiorm)strained by logic or arith-
metic formulas. For example, thiesert operation of a set data structure could be de-
fined by the formul&/s, « e [s.insert(z)] = [s] U {z}, in terms of the union operation
applied to a model sd#].

Descriptive notations can be used in isolation to build laagge-independent mod-
els, or to give a formal semantics to concrete implemematihanguages and meth-
ods such as 7 [25], B [1], and VDM [14] pursue the former apphaisually within
a top-down development framework. Other specificationuaggs and tools such as
RESOLVE [20], AAL [15], and Jahol) [26] are examples of thedaaipproach for the
programming languages'@ and Java.

Descriptive notations are apt to develop correct-by-aoiesibn designs and to ac-
curately document implementations, often with the goal exifying functional cor-
rectness. Using them in contracts, however, introducesianmgation on top of the
programming language, which requires additional effod arpertise from the pro-
grammer and makes it more difficult to to maintain the speatifim synchronized with
the actual implementation. This weakness is shared by edgethotations alike.

5.3 Design-by-contract approaches

Design by contract [18] introduces formal specificationpiograms using the same
notation for implementation and annotations, in an attetmphake writing the con-
tracts as congenial as possible to programmers. The Eiftgjramming language
[8] epitomizes the design by contract methodology, togethth similar solutions for
other languages such as APPI[22] for C, Sp#] for C*#, and many others.

As we discussed also in the rest of the paper, using a subtet pfogramming lan-
guage in annotations helps programmers writing them [3]itlmiten does not provide
enough expressive power to formalize (easily) “completeictional correctness, or
requires cumbersome workarounds to capture the semafticatbematical concepts
in terms of programming language constructs.

5.4 Model-based annotation languages

The Java Modeling Language (JML) [17] 16] is likely the agmiothat shares the most
similarities with ours: JML annotations are based on a dudfdbe Java programming
language and the JML framework provides a library of modetsts mapping mathe-
matical concepts. While sharing a common outlook, the aggres in JML and in the
present paper differ in several details pertaining scopie@chnical aspects.

At the technical level, JIML prefers model variables [5] vehdur approach lever-
ages model queries that return the value ofimmutable mdakedes; each approach has
its merits, but model queries have the advantage of supgoaiti axiomatic definition
that is easily grounded in an underlying mathematical theord facilitate a seamless
integration with traditional contracts — also typicallyseal on queries. Sectign B.1

20

discusses other advantages of model queries. A notatidffedethce is that IML ex-
tends Java’'s expressions with notations for logic opesadod quantifiers, while our
method does not extend Eiffel's syntax and reuses notatioh as agents to express
quantifications and other aspects that belong to expresgagfications.

In terms of scope, our approach strives to be more methouballcand systematic,
with the primary target of fully contracting a complete bloy of data structures. Our
method tries to keep the additional effort required to thegpammer to a minimum.
Finally, let us remark that our usage scenarios are muletéd, ranging from spec-
ification and design (also supporting notions such as caemdss), to verification,
runtime checking, and automated testing.

The present paper extends in scope the previous work of ouraarel-based
classesl[[24, 23], and systematically applies the resultiseae-design and re-imple-
mentation of a rich library of data structures. The expeargegained in this practical
application also prompted us to refine and rediscuss aspgttte previous approach,
as we discussed at length in the rest of the paper.

6 Conclusions and future work

The present work introduces a methodology to write stroteyiace specifications for
reusable object-oriented components. The methodologyisdly based on expressive
models based on mathematical notions and features a ndtspecification complete-
ness which is formal, yet easy to reason about. The applitafithe methodology to
the development of a library of general-purpose data strastdemonstrates its prac-
ticality and its many uses in analysis, design, and veritioat

Future work includes short- and long-term goals. Among trener, we plan to
apply model-based contracts to more real-life exampletjdting application software
from diverse domains. A user study will try to confirm the préhary evidence that
model-based contracts are easy to write, understand, asdir@bout informally.

Longer term work will integrate model-based contracts imith comprehensive
verification environment. This will require, in particulaignificant developments in
the techniques for proofs and tests with model-based azistraVork on proofs will
include dealing systematically with the frame problem artesions of the model-
based contract methodology to non-public features, inetpdbstraction functions,
representation invariants, and loop invariants. Work stirtg will focus on optimizing
the runtime performance of model classes.

References

[1] J.-R. Abrial. The B-book: assigning programs to meanin@ambridge Univer-
sity Press, New York, NY, USA, 1996.

[2] M. Barnett, R. DeLine, M. Fahndrich, B. Jacobs, K. R. Meiho, W. Schulte,
and H. Venter. The Spec# programming system: Challengesliagctions. In
Verified Software: Theories, Tools, Experiments, FirsPIFIC 2/WG 2.3 Confer-

21

ence (VSTTE 2005yolume 4171 oL ecture Notes in Computer Sciengages
144-152. Springer, 2008.

[3] P. Chalin. Are practitioners writing contracts? Rigorous Development of
Complex Fault-Tolerant Systems (RODIN Bqalglume 4157 ol_ecture Notes
in Computer Scieng@ages 100-113. Springer, 2006.

[4] J. Charles. Adding native specifications to jml. ImWorkshop on Formal Tech-
niques for Java-like Programs (FTfJR0O6.

[5] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Mealéhbles: cleanly
supporting abstraction in design by contr&bftw. Pract. Exper35(6):583-599,
2005.

[6] A. Darvas and P. Miller. Faithful mapping of model clesso mathematical
structures. IIBAVCBS '07: Proceedings of the 2007 conference on Speigficat
and verification of component-based systgmagies 31-38, New York, NY, USA,
2007. ACM.

[7]1 N. Dershowitz and J.-P. Jouannaud. Rewrite systems. vanJLeeuwen, editor,
Handbook of Theoretical Computer Scieneslume B, pages 243-320. Elsevier
and MIT Press, 1990.

[8] ECMA International. Standard ECMA-367. Eiffel: Analysis, Design and Pro-
gramming Language2nd edition, June 2006.

[9] http://freeelks.svn.sourceforge.net.

[10] J. A. Gougen, J. W. Thatcher, and E. G. Wagner. An indiglebra approach
to the specification, correctness, and implementation sfratt data types. In
R. Yeh, editor,Current Trends in Programming Methodolqgplume 1V, pages
80-149. Prentice Hall, 1978.

[11] J. V. Guttag and J. J. Horning. The algebraic specificedif abstract data types.
Acta Inf, 10:27-52, 1978.

[12] J. V. Guttag, J. J. Horning, S. J. Garl, K. D. Jones, A. Ehénd J. M. Wing,
editors. Larch: Languages and Tools for Formal Specificati®pringer-Verlag,
1993.

[13] C. A.R. Hoare. Proof of correctness of data represemtatActa Inf, 1:271-281,
1972.

[14] C. B. Jones.Systematic software development using VDRtentice-Hall, 2nd
edition, 1990.

[15] S. Khurshid, D. Marinov, and D. Jackson. An analyzaloleatation language. In
OOPSLA pages 231-245, 2002.

22

[16] G.T.Leavens, A. L. Baker, and C. Ruby. Preliminary dasf JML: a behavioral
interface specification language for jav@lGSOFT Softw. Eng. Note31(3):1—
38, 2006.

[17] G.T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Chlow the design of
JML accommodates both runtime assertion checking and for@nidication. Sci.
Comput. Program.55(1-3):185-208, 2005.

[18] B. Meyer. Object-oriented software constructiorPrentice Hall, 2nd edition,
1997.

[19] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. $fa Programs that test
themselvesComputer42(9):46-55, 2009.

[20] W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H. Zwebenhe RE-
SOLVE framework and disciplineACM SIGSOFT Software Engineering Ngtes
19(4):23-28, 1994.

[21] N. Polikarpova, I. Ciupa, and B. Meyer. A comparativedst of programmer-
written and automatically inferred contracts. IBSTA '09: Proceedings of the
eighteenth international symposium on Software testirdjaralysis pages 93—
104, New York, NY, USA, 2009. ACM.

[22] D. S. Rosenblum. Towards a method of programming widea®ns. INICSE,
pages 92-104, 1992.

[23] B. SchoellerMaking classes provable trough contracts, models and feaRleD
thesis, ETH Zurich, 2007.

[24] B. Schoeller, T. Widmer, and B. Meyer. Making specifioats complete through
models. InArchitecting Systems with Trustworthy Compongeptsgges 48-70,
2004.

[25] J. Woodcock and J. Davies.Using Z: specification, refinement, and proof
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[26] K. Zee, V. Kuncak, and M. C. Rinard. Full functional Vigzation of linked data
structures. IProceedings of the ACM SIGPLAN 2008 Conference on Program-
ming Language Design and Implementation (PLDI'O8ages 349-361. ACM,
2008.

23

	1 Introduction
	2 Motivation and overview
	2.1 Some limitations of Design by Contract
	2.2 Enhancing Design by Contract with models

	3 Foundations of model-based contracts
	3.1 Specifying classes with models
	3.1.1 Interfaces, references, and objects.
	3.1.2 Abstract object space.
	3.1.3 Model classes.
	3.1.4 Model queries.
	3.1.5 Model-based contracts.
	3.1.6 Inheritance and model-based contracts.

	3.2 Completeness of contracts
	3.2.1 Soundness and completeness of a model-based contract.
	3.2.2 Soundness and completeness in practice.

	3.3 Verification: proofs and runtime checking
	3.3.1 Proofs.
	3.3.2 Runtime checking and testing.
	3.3.3 Consistency of tests and proofs.

	4 Model-based contracts at work
	4.1 Case studies
	4.2 Results and discussion
	4.2.1 How many model classes?
	4.2.2 How many complete contracts?
	4.2.3 Contract-based testing with model-based contracts.

	5 Related work
	5.1 Algebraic notations
	5.2 Descriptive notations
	5.3 Design-by-contract approaches
	5.4 Model-based annotation languages

	6 Conclusions and future work

