
ar
X

iv
:1

00
3.

57
77

v1
 [

cs
.S

E
]

30
 M

ar
 2

01
0 Specifying Reusable Components

Nadia Polikarpova Carlo A. Furia Bertrand Meyer

Abstract

Reusable software components need well-defined interfaces, rigorously and
completely documented features, and a design amenable bothto reuse and to for-
mal verification; all these requirements call for expressive specifications. This
paper outlines a rigorous foundation tomodel-based contracts, a methodology to
equip classes with expressive contracts supporting the accurate design, implemen-
tation, and formal verification of reusable components. Model-based contracts
conservatively extend the classic Design by Contract by means of expressive mod-
els based on mathematical notions, which underpin the precise definitions of no-
tions such as abstract equivalence and specification completeness. Preliminary
experiments applying model-based contracts to libraries of data structures demon-
strate the versatility of the methodology and suggest that it can introduce rigorous
notions, but still intuitive and natural to use in practice.

1 Introduction

The case for precise software specifications involves several well-known arguments; in
particular, specifications help understand the problem before building a solution, and
they are necessary for verifying implementations. In the case of a library of reusable
software components, precise specifications have another application, essential to the
effective use of the library: providing client programmerswith a description of the
interface (the API). To help produce such specifications, Design by Contract techniques
[18] let authors of reusable modules equip them with specification elements known
as “contracts” (routine preconditions and postconditions, class invariants), which tools
from the development environment can extract to produce automatically generated API
documentation.

While specifications primarily intended for purposes otherthan component devel-
opment typically use a specification language based on mathematics, approaches using
Design by Contract, such as Eiffel [18], JML [17] and Spec# [2] rely instead on an
assertion language embedded in the programming language. In Eiffel, for example,
contracts are expressed through assertions built out of thelanguages Boolean expres-
sions, with a few extensions; the most notable of these extensions is theold notation
which makes it possible to express postconditions as properties of both the starting and
ending states of the computation. This approach adds a significant element to the list
of benefits of precise specifications: being expressed in theprogramming language,
contracts can beevaluatedduring execution. (We will use the term “executable asser-
tions”, although this is really about evaluation rather than execution; another possible

1

http://arxiv.org/abs/1003.5777v1

term is “embedded” assertion, to emphasize that the assertion language is included in
the programming language.) As a consequence, contracts have played a major role in
testing, especially for Eiffel, where an advanced testing environment, AutoTest [19],
takes advantage of contracts for automatic test generation; more generally, Eiffel pro-
grammers routinely rely on run-time contract evaluation for testing and debugging.

Another practical benefit of the approach is teachability: programmers already un-
derstand Boolean expressions, and do not need to learn a separate specification lan-
guage. These practical advantages of executable assertions have traditionally come
at a price: expressiveness. Unlike a full-fledged specification language (such as B
[1], based on set theory), an assertion language embedded ina programming language
makes it harder to express the full specification of programsand components. As a typ-
ical example, the postcondition of a “push” operation on a stack in the existing standard
Eiffel library expresses that the new top of the stack will bethe item just pushed, and
that the number of items will have been increased by one; but it typically does not state,
except in the form of a comment, that theother elements of the stack are unaffected.
This example is typical: an extensive study [3] indicates that in practice Eiffel classes
contain many contracts, but (see also [21]) they cover only part of the programmers
informal understanding of the specification.

Can we retain all the advanced benefits of specifications, in particular support com-
pleteness of specifications and static checks (including proofs), while retaining an ex-
ecutable specification language that can also be used for testing? The present work
proposes a positive answer, based on the idea ofmodels.

Specifications, in this approach, do not require any speciallanguage beyond the
classical assertion language embedded in the programming language. Instead, they
rely on a methodological principle: associate with every class one or moremodel
queriesspecifying the semantics of the associated objects throughstandard mathemat-
ical concepts, represented by instances ofmodel classes. The model classes are also
expressed in the programming language, but they are just direct translations of math-
ematical concepts (such as sets, functions, relations etc.); they have no operational
properties (attributes (fields), assignment, side effects, procedures and such), so that
the corresponding objects are immutable. The model queriesof a normal (non-model)
class are expressed in terms of such model classes; for example a stack class can have
a model querysequenceof the model typeSEQUENCE, associating a sequence with every
stack (the sequence of stack items, starting for example from the top). It is then pos-
sible to specify operations of the class through their effect on the model queries; for
example the push operations yields a new stack whosesequencequery yields a sequence
starting with the element being pushed and continuing with the elements of the origi-
nal sequence. In this example the class only has one model query (sequence), but any
number of model queries is possible; the model queries can beexisting features of the
class, or new features added for the sole purpose of specification.

This idea ofmodel-based contractsis not new; previous own work [24, 23] and,
among others, JML [17] introduced the concept and provided libraries of model classes.
Developing arigorous and systematic approach to model-based specifications is the
main contribution of the present paper. Section 3 shows how the interface of a class de-
fines unambiguously a notion ofabstract space, which in turn determines the model of
the class; programmers can easily introduce model classes and model queries in accor-

2

dance with this model. Section 3 also outlines precise guidelines to write contracts that
refer to the chosen model queries. The guidelines come with adefinition ofcomplete-
nessof the postcondition of a feature with respect to the class model. The definition is
formal, yet amenable to informal reasoning; it is practically useful in assessing whether
a contract is sufficiently detailed or is likely omitting some important details of what
the feature achieves.

Section 4 describes two case studies that used this methodology for model-based
specifications to develop libraries of data structures withstrong contracts. The results
achieved show that the methodology is successful in delivering well-designed com-
ponents with expressive — usually complete — specifications. Most advantages of
standard Design by Contract are retained, such as congeniality to programmers and
ease of reasoning, while pushing a more accurate evaluationof design choices and an
impeccable definition of interfaces. The executability of most model classes even sup-
ports the reuse of Eiffel’s automated contract-based testing infrastructure with more
expressive contracts, which boosts the effectiveness of automated testing in finding
defects in developed software.

2 Motivation and overview

Design by Contract (DbC) is a discipline of analysis, design, implementation, and man-
agement of software. It relies on the fundamental idea of defining the role of any com-
ponent in the system in terms of acontractthat formalizes the obligations and benefits
of that component relative to the rest of the system. Concretely, the contract is as a
collection of assertions (preconditions, postconditions, andinvariants) that constitute
the module’sspecification.

2.1 Some limitations of Design by Contract

To emphasize the seamless connection that must exist between specification and im-
plementation, and to make writing contracts palatable to the programmer, DbC uses
the same notation for expressions in the implementation andin the specification. This
choice successfully encourages programmers to write contracts [3]. On the other hand,
it also restricts the assertions that can be expressed — or that can be expressed easily.
This restriction ultimately impedes the formalization andverification of full functional
correctness and even limits the scope of application of DbC for the correct design of an
implementation. Let us demonstrate this on a couple of examples from the EiffelBase
library [9].

Lines 1–14 in Table 1 show a portion of classLINKED LIST, implementing a dy-
namic list. Features (members)count and index record respectively the number of ele-
ments stored in the list and the current position of the internal cursor. Routineput right

inserts an elementv to the right of the current position of the cursor, without moving
it. The postcondition of the routine (clauseensure) asserts that inserting an element
incrementscounter by one but does not changeindex. This is correct, but it does not
capture the gist of the semantics of insertion: the list after insertion is obtained by all

3

2 classLINKED LIST [G]
3 count: INTEGER−− Number of elements
4

5 index: INTEGER−− Current cursor position
6

7 put right (v: G)
8 −− Add ‘v’ to the right of cursor.
9 require 0≤ index≤ count

10 do . . .

11 ensure
12 count= old count+ 1
13 index= old index
14 end

16 duplicate(n: INTEGER): LINKED LIST
17 −− Copy of sublist of length ‘n’ beginning at current position
18 require n ≥ 0 do . . . ensure Result.index= 0 end
19 end
20

21 classTABLE [G, K]
22 put (v: G ; k: K)
23 −− Associate value ‘v’ with key ‘k’.
24 require valid key(k)
25 deferred end
26

27 end

Table 1: Snippets from the EiffelBase classesLINKED LIST (lines 1–17) andTABLE (lines
19–25).

the elements that were in the list up to positionindex, followed by elementv and then by
all elements that were to the right ofindex.

Expressing such complex facts is impossible or exceedinglycomplicated with the
standard assertion language; as a result most specifications areincompletein the sense
that they fail to capture precisely the functional semantics of routines. Weak specifi-
cations hinder formal verification in two ways. First, establishing weak postconditions
is simple, but confidence in the full functional correctnessof a verified routine will
be low: the quality of specifications limits the value of verification. Second, weak
contracts affect negatively verification modularity: it isimpossible to establish what a
routiner achieves, ifr calls another routines whose contract is not strong enough to
document its effect withinr precisely.

Weak assertions limit the potential of many other applications of DbC. Specifica-
tions, for example, should document the abstract semanticsof operations in deferred
classes (classes without an implementation). Weak contracts cannot fully do so; as a
result, programmers have fewer safeguards to prevent inconsistencies in the design and
fewer chances to make deferred classes useful to clients through polymorphism and
dynamic dispatching.

Featureput in classTABLE (lines 16–19 in Table 1) is an example of such a phe-
nomenon. It is unclear how to express the abstract semanticsof put with standard
contracts. In particular, the absence of a postcondition leaves it undefined what should
happen when an element is inserted with a key that is already associated to some other
element: shouldput replace the previous element with the new one or cancel the inser-
tion of the new element? Indeed, some heirs ofTABLE implementput with a replace-
ment semantics (such as classARRAY), while others disallow overriding of preexisting
mappings withput (such as classHASH TABLE). Some classes (includingHASH TABLE)
even introduce another featureforce that implements the replacement semantics. This
obscures the behavior of routines to clients and makes it questionable whetherput has
been introduced at the right point in the inheritance hierarchy.

4

2 note model: sequence, index
3 classLINKED LIST [G]
4 sequence: MML SEQUENCE[G]
5 −− Sequence of elements
6 do . . . end
7

8 count: INTEGER−− Number of elements
9 ensure Result= sequence.countend

10

11 index: INTEGER−− Current cursor position
12

13 put right (v: G)
14 −− Add ‘v’ to the right of cursor.
15 require 0≤ index≤ count
16 do . . .

17 ensure
18 sequence= old (sequence.front (index)
19 .extended(v) + sequence.tail (index+ 1))
20 index= old index
21 end
22 end

24 note model: map
25 classTABLE [G, K]
26 map: MML MAP [G, K]
27 −− Map of keys to values
28 deferred end
29

30 put (v: G ; k: K)
31 −− Associate value ‘v’ with key ‘k’.
32 require map.domain[k]
33 deferred
34 ensure
35 map= old map.replacedat (k, v)
36 end
37 end

Table 2: ClassesLINKED LIST (left) andTABLE (right) with model-based contracts.

2.2 Enhancing Design by Contract with models

This paper presents an extension of DbC that addresses the aforementioned problems.
The extension conservatively enhances DbC withmodel classes: immutable classes
representing mathematical concepts that provide for more expressive specifications.
Wrapping mathematical entities with classes supports richer contracts without need
to extend the notation, which remains the one familiar to programmers as in DbC.
Contracts using model classes are calledmodel-based contracts.

Table 2 shows an extensions of the examples in Table 1 with model-based con-
tracts.LINKED LIST is augmented with a querysequencethat returns an instance of class
MML SEQUENCE, a model class representing a mathematical sequence of elements of
homogeneous type; the implementation, omitted for brevity, buildssequenceaccording
to the actual content of the list. The meta-annotationnote declares the two features
sequenceand index asmodel of the class; every contract will rely on the abstraction they
provide. In particular, the postcondition ofput right can precisely describe the effect of
the routine: the newsequenceis the concatenation of theold sequenceup to index, extended
with elementv, with the tail of theold sequencestarting afterindex. We can assert that
the new postcondition — including the clause aboutindex — is completewith respect
to the model of the class, because it completely defines the effect of put right on the
abstract model. This notion of completeness is a powerful guide to writing accurate
specification that makes for well-defined interfaces and verifiable classes.

The mathematical notion of amap— encapsulated by the model classMML MAP —
is the natural model for the classTABLE. Featuremapcannot have an implementation
yet, becauseTABLE is deferred and hence it is not committed to any representation of
data. Nonetheless, the mere availability of a model class supports complex specifica-
tions already at this abstract level. In particular, writing a complete postcondition for
routineput requires to commit to a specific semantics for insertion. Theexample in

5

Table 2 chooses the replacement semantics; correspondingly, all heirs ofTABLE will
have to conform to this semantics, guaranteeing a coherent reuse ofTABLE throughout
the class hierarchy.

3 Foundations of model-based contracts

3.1 Specifying classes with models

This subsection describes a rigorous approach to equippingclasses with expressive
contracts.

3.1.1 Interfaces, references, and objects.

The definitions of abstract objects and models (introduced in the remainder) rely on
the following simple assumptions about classes. A classC denotes a collection of
objects. Expressions such aso : C defineo as a reference to an object of classC; the
notation is overloaded for conciseness, so that occurrences of o can denote the object
it references or the reference itself, according to the context. Each classC defines
a notion ofreferenceequality≡C and of object equality⊜C ; both are equivalence
relations. Two objectso1, o2 : C of classC can bereference equal(writteno1 ≡C o2)
or object equal(written o1 ⊜C o2). Reference equality is meant to capture whether
o1 ando2 are aliases for the same physical object, whereas object equality is meant
to hold for (possibly) physically distinct objects with thesame actual content. The
following discussion is however independent of the particular choice of reference and
object equality.

The principle of information hiding prescribes that each class define an interface:
the set of its publicly accessible features [18]. It is good practice to partition features
into queries and commands; queries are functions of the object state, whereas com-
mands modify the object state but do not return any value.IC = QC ∪MC denotes the
interface of a classC partitioned in queriesQC and commandsMC .1 It is convenient
to partition all queries intovalue-boundqueriesQo

C andreference-boundqueriesQr
C .

Value-bound queries should create fresh objects to return (or more generally objects
that were unknown to the client before calling the query), whereas reference-bound
queries give the client direct access, through a reference,to parts of the target object
or of the query arguments. In other words, clients of a value-bound query are insensi-
tive to whether they received a unique fresh object or they are just sharing a reference
to a previously existing one. The chosen partitioning between value-bound and refer-
ence bound queries does not affect the following discussion, although it is usually quite
natural to adhere to this informal distinction when designing a class.

Example 1. Query item (Table 3) is reference-bound, as the client receives the very
same physical object that was earlier inserted in the list. Query duplicate (Table 3) is
instead value-bound, as it returns a copy of a portion of the list.

1Constructors need no special treatment and can be modeled asqueries returning new objects.

6

The classification in value-bound and reference-bound extends naturally toargu-
mentsof features: if the feature does not rely on having a direct reference to the actual
argument (as opposed to a copy of it), the argument is value-bound; otherwise, it is
reference-bound.

3.1.2 Abstract object space.

The interfaceIC induces an equivalence relation≍C over objects of classC calledab-
stract equalityand defined as follows:o1 ≍C o2 holds foro1, o2 : C iff for any appli-
cable sequence of calls to commandsm1,m2, . . . ∈ M∗

C and a queryq ∈ QC returning
objects of some classT , the qualified callso1.m1; o1.m2; · · · ando2.m1; o2.m2; · · ·
(with identical actual arguments where appropriate) driveo1 ando2 in states such that
if q is reference-bound theno1.q ≡T o2.q, and ifq is value-bound theno1.q ⊜T o2.q.
Intuitively, two objects are equivalent with respect to≍C if a client cannot distinguish
them by any sequence of calls to public features.

Abstract equality defines anabstract object space: the quotient setAC = C/ ≍C

of C (as a set of objects) by≍C . As a consequence, two objects are equivalent w.r.t.
≍C iff they have the sameabstract (object) state. Any concrete set that is isomorphic
toAC is called amodelof C.

Example 2. A queueclass typically consists of the queriesitem, count, andempty—
returning the next element to be dequeued, the total number of elements in the queue,
and a fresh empty queue — and the commandsput andremove— to enqueue an element
and dequeue the next element. Ifremovewere not part of the interface, any element in
the queue but the least recently inserted one would be inaccessible to clients; the model
of such a class would then be a pair of typeN × G recording the current number of
elements and the latest enqueued element of generic typeG. Including removein the
interface, as it usually is the case for queues, allows clients to read the whole sequence
of enqueued elements. Hence, two queues with full interfaces are indistinguishable iff
they have the very same sequence of elements; the model of a queue class with full
interface is then an abstract sequence of typeG∗.

As all the following examples will suggest, the most naturaldesign choice imple-
ments object equality to have the same semantics as abstractequality. Notice, however,
that complying or not with this rule of thumb does not affect the soundness of the defi-
nitions in the present paper, nor does introduce circularities in the definition of abstract
equality.

3.1.3 Model classes.

The model of a classC is expressed as a collectionDC = D1
C , D

2
C ,

. . . , Dn
C of model classes.2 Model classes are immutable classes designed for spec-

ification purposes; essentially, they are wrappers of rigorously defined mathematical
entities: elementary sorts such as Booleans, integers, andobject references, as well
as more complex structures such as sets, bags, relations, maps, and sequences. The

2The model may include the same class multiple times

7

MML library [23] provides a variety of such model classes, equipped with features
that correspond to common operations on the mathematical structure they represent,
including first-order quantification. For example, classMML SET models sets of ele-
ments of homogeneous type; it includes features for operations such as membership
and quantification over all elements of the set that satisfy acertain predicate (passed as
a function object).

Example 3. As we discussed in Example 2, a sequence is a suitable model for a queue;
it can be represented by classMML SEQUENCE. To represent the model of a linked
list with internal cursor, we can combine a sequence of classMML SEQUENCEwith an
element of classINTEGER to represent the position of the cursor; this assumes that no
information about the pointer structure of the list in the heap is accessible through the
interface of the class.

3.1.4 Model queries.

Every classC provides a collection of publicmodel queriesSC = s1C , s
2
C , . . . , s

n
C , one

for each component model class inDC . Each model querysiC returns an instance of
the corresponding model classDi

C that represents the current value of thei-th com-
ponent of the model. (Informally, the values returned by model queries are analogues
to the coefficients expressing the abstract state as a combination of independent ba-
sis vectors spanning the whole space). Since the abstract object state should always
be defined between operations and should not depend on the state of any other ob-
ject, model queries are typically argumentless and withoutprecondition. Clauses in
the class invariant can constrain the values of the model queries to match precisely
the abstract states of the model. For example, model queryindex: INTEGER returning
the cursor position of theLINKED LIST in Table 1 should be constrained by an invari-
ant clause0 ≤ index≤ sequence.count+ 1. A meta-annotationnotemodel: s1

C
, s

2

C
, . . . lists all

model queries of the class (see Table 2 for an example).
Programmers can add model queries incrementally to classesdeveloped with DbC.

In fact, it is likely that some model queries are already usedin the implementation
before models are added explicitly; for example featureindexof classLINKED LIST (Ta-
ble 2). Additional model queries return the remaining components of the model for
specification purposes, such assequencein LINKED LIST.

Our approach prefers to implement new model queries as functions rather than
attributes. This choice facilitates a purely descriptive usage of references to model
queries in specifications. In other words, instead of augmenting routine bodies with
bookkeeping instructions that update model attributes, routine postconditions are ex-
tended with clauses that describe the new value returned by model queries in terms of
the old one. This has the advantage of enforcing a cleaner division between implemen-
tation and specification, while better modularizing the latter at routine level (properties
of model attributes are typically gathered in the class invariant). A meta-annotation of
the formnotespecificationtags model queries that are not meant for use in implementa-
tion; runtime checking of annotations calling these model queries can be disabled if
performance is a concern.

8

35 note model: sequence, index
36 classLINKED LIST [G]
37 . . .

38 has(v: G): BOOLEAN
39 −− Does list include ‘v’? (Reference equality)
40 do . . .

41 ensure Result iffsequence.has(v) end
42

43 item: G
44 −− Value at cursor position
45 require
46 sequence.domain[index]
47 ensure
48 Result = sequence[index]
49 end

51 duplicate(n: INTEGER): LINKED LIST [G]
52 −− A copy of at most ‘n’ elements
53 −− starting at cursor position
54 require n≥ 0
55 do . . .

56 ensure
57 Result.sequence= sequence.interval (index, index+ n− 1)
58 Result.index= 0
59 end
60

61 makeempty
62 −− Create an empty list
63 ensuresequence.is emptyand index= 0
64 end
65 . . .

66 end

Table 3: Snippets of classLINKED LIST with model-based contracts (continued from Ta-
ble 2).

3.1.5 Model-based contracts.

Let C be a class equipped with model queries whose interfaceIC is partitioned into
queriesQC and commandsMC . QC now includes the model queriesSC ⊆ QC

together with other queriesRC = QC \SC (note that this does not change the abstract
space according to the definitions given at the beginning of the section). Queries in
RC are calledstandard queries. The rest of the section contains guidelines to writing
model-based contracts for commands inMC and queries inRC .

• Thepreconditionof a feature is a constraint on the abstract values of its value-
bound arguments and, possibly, on the actual references to its reference-bound
arguments. The target object, in particular, can be considered an implicit value-
bound argument. For example, the preconditionmap.domain[k] of featureput in
classTABLE (Table 2), refers to the abstract state of the target object,given by
the model querymap, and to its actual reference-bound argumentk.

• Postconditionsshould refer to abstract states only through model queries.This
emphasizes the components of the abstract state that a feature modifies or relies
upon, which in turn facilitates understanding and reasoning on the semantics of
a feature.

• The postcondition of a commanddefines a relation between the prestate and
the poststate of its arguments and the target object; prestate and poststate refer
respectively to the state before and after executing the command. More precisely,
the postcondition mentions only abstract values of its value-bound arguments and
possibly the actual references to its reference-bound arguments; the target object
is considered value-bound both in the prestate and in the poststate.

It is common that a command only affects a few components of the abstract state
and leaves all the others unchanged. Accordingly, theclosed world assumption
is convenient: the value of any model querys ∈ SC that is not mentioned in

9

2 note model: bag
3 classCOLLECTION[G]
4 bag: MML BAG [G]
5

6 is empty: BOOLEAN
7 ensure Result= bag.is emptyend
8

9 wipe out
10 ensurebag.is emptyend
11

12 put (v: G)
13 ensurebag= old bag.extended(v) end
14 end

16 note model: sequence
17 classDISPENSER[G]
18 inherit COLLECTION[G]
19

20 sequence: MML SEQUENCE[G]
21

22 invariant
23 bag.domain= sequence.range
24 bag.domain.for all (agent(x: G): BOOLEAN
25 bag [x] = sequence.occurrences(x))
26 end

Table 4: Snippets of classesCOLLECTION (left) andDISPENSER(right) with model-based
contracts.

the postcondition is assumed not to be modified by the command, as if s = old s

were a clause of the postcondition. When the closed world assumption is wrong,
explicit clauses in the postcondition should establish thecorrect semantics. If a
command may modify the value of a model querys but the actual new value is
not known precisely ands is not mentioned in other clauses of the postcondition,
add a clauserelevant(s) to the postcondition of the command (in terms of imple-
mentation,relevant is just a constant function that returns true). If a command
does not affect the value a model querys but the postcondition of the command
mentionss, add a clauses = old s to the postcondition of the command.

• Thepostcondition of a querydefines the result as a function of its arguments and
the target object (with the usual discipline of mentioning only abstract values
of value-bound arguments and target object and possibly actual references to
reference-bound arguments). Value-bound queries define the abstract state of
the result, whereas reference-bound queries describe an actual reference to it.
For example, compare the postcondition of the reference-bound queryitem from
classLINKED LIST (Table 3), which precisely defines a reference to the returned
list element, with the postcondition of the value-bound query duplicatein the same
class, which specifies the abstract state of the returned list.

• A clear-cut separation between queries and commands assumes abstract purity
for all queries: executing a query leaves the abstract stateof all its arguments and
of the target object unchanged.

3.1.6 Inheritance and model-based contracts.

A classC′ that inherits from a parent classC may or may not re-useC ’s model queries
to represent its own abstract state. For every model querysC ∈ SC of the parent class
that is not among the heir’s model queriesSC′ , C′ should provide alinking invari-
ant to guarantee consistency in the inheritance hierarchy. Thelinking invariant is a
formula that defines the value returned bysC in terms of the values returned by the

10

model queriesSC′ of the inheriting class. This guarantees that the new model is indeed
a specialization of the previous model, in accordance with the notion of sub-typing
inheritance.

A properly defined linking invariant ensures that every inherited feature has a defi-
nite semantics in terms of the new model. However, the new semantics may be weaker
in that a command whose contract in the parent class characterized it as a function,
becomes characterized as a relation in the child class; thatis, incompleteness is intro-
duced (see Section 3.2).

Example 4. Consider classCOLLECTION in Table 4, a generic container of elements
whose model is a bag. ClassDISPENSERinherits fromCOLLECTION and specializes it
by introducing a notion of insertion order; correspondingly, its model is a sequence.
The linking invariant ofDISPENSERdefines the value of the inherited featurebag in
terms of the new featuresequence: the domain ofbagcoincides with the range ofsequence

, and the number of occurrences of any elementx in bag correspond to the number of
occurrences of the same element insequence.

The linking invariant ensures that the semantics of features is emptyandwipe outis
unambiguously defined also inDISPENSER. On the other hand, the model-based contract
of commandput in COLLECTIONand the linking invariant are insufficient to characterize
the effects ofput in DISPENSER, as the position within the sequence where the new
element is inserted is irrelevant for the bag.

3.2 Completeness of contracts

The notion ofcompletenessfor the specification of a class gives an indication of how
accurate are the contracts of that class with respect to the model. An incomplete con-
tract does not fully capture the effects of a feature, suggesting that the contract may be
more detailed or, less commonly, that the model of the class —and hence its interface
— is not abstract enough. Unlike the notion ofsufficient completenessfor algebraic
specifications [11] — that serves a similar purpose —, the present definition of com-
pleteness is structurally similar to the concept of completeness for a set of axioms, and
a dual notion of soundness complements it. For simplicity, the following definitions do
not mention feature arguments; introducing them is, however, routine.

3.2.1 Soundness and completeness of a model-based contract.

Let f be a feature of classC. The specification off denotes two predicatespref and
postf . pref represents the set of objects of classC that satisfy the precondition. If
f is a query returning object of classT , postf has signatureC × T and denotes the
pairs of target and returned objects. Iff is a command,postf has signatureC × C

and denotes the pairs of target objects before and after executing the command.3

• The preconditionof a featuref (query or command) issound iff: for every
o1, o2 : C such thato1 ≍C o2 it is pref (o1) ⇔ pref (o2).

4

3These definitions imply the absence of side-effects in evaluating assertions.
4Completeness of preconditions is not an interesting notionand hence it is not defined.

11

• Thepostcondition of a commandm is soundiff: for every o, o′1, o
′
2 : C such that

prem(o) ando′1 ≍C o′2 it is postm(o, o′1) ⇔ postm(o, o′2).

Thepostcondition of a commandm is completeiff: for every o, o′1, o
′
2 : C such

thatprem(o), postm(o, o′1), andpostm(o, o′2) it is o′1 ≍C o′2.

• The postcondition of a value-bound queryq is soundiff: for every o : C and
t1, t2 : T such thatpreq(o) andt1 ≍T t2 it is postq(o, t1) ⇔ postq(o, t2).

Thepostcondition of a value-bound queryq is completeiff: for every o : C and
t1, t2 : T such thatpreq(o), postq(o, t1), andpostq(o, t2) it is t1 ≍T t2.

• Thepostcondition of a reference-bound queryq is soundiff: for every o : C and
t1, t2 : T such thatpreq(o) andt1 ≡T t2 it is postq(o, t1) ⇔ postq(o, t2).

Thepostcondition of a reference-bound queryq is completeiff: for every o : C
andt1, t2 : T such thatpreq(o), postq(o, t1), andpostq(o, t2) it is t1 ≡T t2.

Informally, a sound assertion is one that is consistent withthe notion of equivalence
that is appropriate: sound postconditions of commands and value-bound queries do
not distinguish between objects with the same abstract state; sound postconditions of
reference-bound queries do not distinguish between aliases.5

A postcondition is complete if all the pairs of objects that satisfy it are equivalent
(according to the right model of equivalence). This means that the complete postcon-
dition of a command defines the effects of the command as a mathematicalfunction(as
apposed to a relation) from the prestate to the abstract poststate. Similarly, the com-
plete postcondition of a query defines the result as afunctionof the abstract state of
value-bound arguments and of actual references to reference-bound arguments.

Example 5. The contracts of featuresis empty, wipe out, andput in classCOLLECTION

(Table 4) are sound and complete; the postcondition ofput, in particular, is complete
as it defines the new value ofbag uniquely. In the heir classDISPENSER, however,
the inherited postcondition ofput becomes incomplete: the linking invariant does not
uniquely definesequencefrom bag, hence inequivalent sequences (for example, one with
v inserted at the beginning and another one withv at the end) satisfy the postcondition.

3.2.2 Soundness and completeness in practice.

As the previous example suggests, reasoning informally — but precisely — about
soundness and completeness of model-based contracts is often straightforward and
intuitive, especially if the guidelines of Section 3.1 havebeen followed. Complete-
ness captures the uniqueness of the (abstract) state described by a postcondition, hence
query postconditions in the formResult = exp(s, a) or Result.s= exp(s, a) and command
postconditions in the forms= exp(old s, a) — whereexp is a side-effect free expression,s

denotes the value returned by the model query of some argument, anda is a reference-
bound argument — are painless to check for completeness.

5Postconditions of argumentless reference-bound queries are trivially sound for sensible definitions of
reference equality.

12

Example 6. Consider the following example, from classARRAY whose model is a
map.

2 fill (v: G ; l, u: INTEGER) −− Put ‘v’ at all positions in [‘l’, ‘u’].
3 require map.domain[l] and map.domain[u]
4 ensuremap.domain= old map.domain
5 (map| {MML INT SET} [[l, u]]). is constant(v)
6 (map| (map.domain− {MML INT SET} [[l, u]])) =
7 old (map| (map.domain− {MML INT SET} [[l, u]]))
8 end

Pre and postconditions are sound because they both refer only to model queries, or
functions thereof. The following reasoning shows that the postcondition is also com-
plete: a map is uniquely defined by its domain and by a value forevery key in the
domain. The first clause of the postcondition defined the domain completely. Then,
let k be any key in the domain. Ifk ∈ [l, u] then the second clause definesmap(k)= v;
otherwisek 6∈ [l, u], and the third clause postulatesmap(k) unchanged.

Soundness is a mandatory requirement for pre and postconditions in the presence
of model-based contracts, as it boils down to writing contracts that are consistent with
the chosen level of information hiding.

On the other hand, how useful is completeness in practice? Asa norm, complete-
ness is a valuable yardstick to evaluate whether the contracts are sufficiently detailed.
This is not enough to guarantee that the contracts are correct — and meet the origi-
nal requirements — but the yardstick is serviceable methodologically to focus on what
a routine really achieves and how that is related to the abstract model. As a result,
inconsistencies in specifications are less likely to occur,and the impossibility of sys-
tematically writing complete contracts is a strong indication that the model is incorrect,
or the implementation is faulty. Either way, a warning is available before attempting a
correctness proof.

While complete postconditions should be the norm, there arerecurring cases where
incomplete postconditions are unavoidable or even preferable. Three major sources of
benign incompleteness are the following.

• Inherentlynondeterministic or stochasticspecifications. For example, a class
for random number generation can use a sequence as model, butits specification
should not define the precise content of the sequence unambiguously.

• Usage ofinheritanceto factor out common parts of (complete) specifications.
For example, classDISPENSERin Table 4 is a common ancestor ofSTACK and
QUEUE. If its interface includes featuresitem, put and remove, its model must be
isomorphic to a sequence. Then, it becomes impossible to write a complete post-
condition forput in DISPENSER: the specification ofput cannot define precisely
where an element is added to the sequence; a choice compatible with the seman-
tics of STACK will be incompatible withQUEUEand vice versa.

• Imperfections ininformation hiding. For example, classARRAYED LIST is an
array-based implementation of lists which exports a querycapacityreturning the
size of the underlying array; this piece of information is then part of the model of

13

2 note mappedto: ”Sequence G”
3 classMML SEQUENCE[G]
4 . . .

5 extended(x: G): MML SEQUENCE[G]
6 −− Current sequence extended with ‘x’ at the end
7 note mappedto: ”Sequence.extended(Current, x)”
8 do ... end
9 end

9 type SequenceT = [int] T ;
10 function Sequence.extended〈T〉 (SequenceT, T)
11 returns (SequenceT);
12 axiom (∀ 〈T〉 s: SequenceT, x:T • {Sequence.extended(s, x)

}
13 Sequence.extended(s, x) =s[Sequence.count(s)+1 := x]) ;
14 axiom (∀ 〈T〉 s: SequenceT, x: T •
15 {Sequence.count(Sequence.extended(s, x))}
16 Sequence.count(Sequence.extended(s, x)) =

17 Sequence.count(s)+1);
18 . . .

Table 5: Snippets from classMML SEQUENCE(left) and the corresponding Boogie theory
(right).

the class. Default constructors setcapacityto an initial fixed value. Their postcon-
ditions, however, do not mention this default value, hence they are incomplete.
The rationale behind not revealing this information is thatclients should not rely
on the exact size of the array when they invoke the constructor.

In all these cases, reasoning about completeness is still likely to improve the under-
standing of the classes and to question constructively the choices made for interfaces
and inheritance hierarchies.

3.3 Verification: proofs and runtime checking

This subsection outlines the main ideas behind using model-based contracts for verifi-
cation with formal correctness proofs and with runtime checking for automated testing.
Its goal is not to detail any particular proof or testing technique, but rather to sketch
how to express the semantics of model-based contracts within standard verification
frameworks.

3.3.1 Proofs.

Theaxiomatictreatment of model classes [4, 23, 6] is quite natural: the semantics of a
model class is defined directly in terms of a theory expressedin the underlying proof
language, rather than with “special” contracts. The mapping is often straightforward,
and has the advantage of reusing theories that are optimizedfor effective usage with
the proof engine of choice. In addition, the immutability (and value semantics) of
model classes makes them very similar to mathematical structures and facilitates a
straightforward translation into mathematical theories.

In this respect, we are currently developing an accurate mapping of model classes
and model-based contracts into Boogie [2]. First, the mapping introduces axiomatic
definitions of MML model classes as Boogie theories; annotations in the formnote

mappedto connect MML classes to the corresponding Boogie types. For example, Table
5 shows how a portion of theMML SEQUENCEmodel class translates into a Boogie
theory: a mapping type[int] T represents sequences of elements of generic typeT, and

14

a few axioms constrain a functionSequence.extendedto return values in accordance with
the MML semantic of featureextended.

Then, each model query in a class with model-based contractsmaps to a Boogie
function that references a representation of the heap; someaxioms connect the value
returned by the function to other features in the translatedclass. For example, the
model querysequencein LINKED LIST becomesfunction LinkedList. sequence(HeapType, ref)

returns (Sequenceref).
Finally, model-based contracts are translated into Boogieformulas according to

the mappedto annotations in model classes. For example, the postcondition clause:
sequence= old (sequence.front (index).extended(v)+ sequence.tail (index+ 1)) of put right in
LINKED LIST (Table 2) maps to the Boogie formula:

LinkedList. sequence(Heap, Current) = Sequence.concat (Sequence.extended(
Sequence.front (LinkedList. sequence(old(Heap), Current) ,

LinkedList. index(old(Heap), Current)) , v) ,
Sequence.tail (LinkedList. sequence(old(Heap), Current) ,

LinkedList. index(old(Heap), Current) + 1)) ;

3.3.2 Runtime checking and testing.

Most model classes representfinitemathematical objects, such as sets of finite cardinal-
ity, sequences of finite length, and so on. All these classes can have an implementation
of their operations which is executable in finite time; this supports the runtime checking
of assertions that reference these model classes.

Testing techniques can leverage runtime checkable contracts to fully automate the
testing process: generate objects by randomly calling constructors and commands;
check the precondition of a routine on the generated objectsto filter out valid inputs
for the routine; execute the routine body on a valid input andcheck the validity of the
postcondition on the result; any postcondition violation on a valid input is a fault in the
routine.

This approach to contract-based testing has proved extremely effective at uncov-
ering plenty of bugs in production code [19], hence it is an excellent “lightweight”
precursor to correctness proofs. Contract-based testing,however, is only as good as
the contracts are; the weak postconditions of traditional DbC, in particular, leave many
real faults undetected. Runtime checkable model-base contracts can help in this respect
and boost the effectiveness of contract-based testing by providing more expressive, and
complete, specifications. Section 4 describes some testingexperiments that support this
claim.

3.3.3 Consistency of tests and proofs.

Using contract-based testing as a precursor to correctnessproofs poses the problem
of consistency between two semantics given to model classes: the runtime semantics
given by an executable implementation and the proof semantics given by a mapping to
a logical theory. Under reasonable assumptions about the execution environment, con-
sistency must ensure that a component is proven correct against its model-based speci-
fication if and only if testing the component never detects a violation of its model-based

15

contracts. Establishing this consistency amounts to proving that: (1) the implementa-
tion of each model class is consistent with the mapping of theclass to a logical theory;
and (2) the implementation of each model query satisfies its specification. Future work
will detail and address these problems.

4 Model-based contracts at work

This section describes experiments in developing model-based contracts for real object-
oriented software written in Eiffel. The experiments target two non-trivial case studies
based on data-structure libraries (described in Section 4.1) with the goal of demonstrat-
ing that deploying model-based contracts is feasible, practical, and useful. Section 4.2
discusses the successes and limitations highlighted by theexperiments.

4.1 Case studies

The first case study targeted EiffelBase [9], a library of general-purpose data struc-
tures widely used in Eiffel programs; EiffelBase is representative of mature Eiffel
code exploiting extensively traditional DbC. We selected 7classes from EiffelBase,
for a total of 304 features (254 of them are public) over more that 5700 lines of code.
The 7 classes include 3 widely used container data structures (ARRAY, ARRAYED LIST,
andLINKED LIST) and 4 auxiliary classes used by the containers (INTEGER INTERVAL,
LINKABLE , ARRAYED LIST CURSOR, andLINKED LIST CURSOR). Our experiments sys-
tematically introduced models and conservatively augmented the contracts of all public
features in these 7 classes with model-based specifications.

The second case study developed EiffelBase2, a new general-purpose data struc-
ture library. The design of EiffelBase2 is similar to that ofits precursor EiffelBase;
EiffelBase2, however, has been developed from the start with expressive model-based
specifications and with the ultimate goal of proving its fullfunctional correctness —
backward compatibility is not one of its primary aims. This implies that EiffelBase2
rediscusses and solves any deficiency and inconsistency in the design of EiffelBase that
impedes achieving full functional correctness or hinders the full-fledged application of
formal techniques. EiffelBase2 provides containers such as arrays, lists, sets, tables,
stacks, queues, and binary trees; iterators to traverse these containers; and comparator
objects to parametrize containers with respect to arbitrary equivalence and order rela-
tions on their elements. The current version of EiffelBase2includes 46 classes with
460 features (403 of them are public) totaling about 5800 lines of code; these figures
make EiffelBase2 a library of substantial size with realistic functionalities. The latest
version of EiffelBase2 is available athttp://eiffelbase2.origo.ethz.ch.

4.2 Results and discussion

This section addresses the following questions based on theexperience with the two
case studies of EiffelBase and EiffelBase2.

• How many different model classes are needed to write model-based contracts?

16

http://eiffelbase2.origo.ethz.ch

2 note model: set, relation
3 classSET[G]
4 . . .

5 has(v: G): BOOLEAN
6 −− Does this set contain ‘v’?
7 ensure
8 Result = not (set∗ relation.imageof (v)).is empty
9 end

10

11 set: MML SET[G] −− The set of elements
12 relation: MML RELATION [G, G]
13 −− Equivalence relation on elements
14 end

16 note model: map
17 classBINARY TREE[G]
18 . . .

19 add root (v: G)
20 −− Add a root with value ‘v’ to an empty tree
21 require map.is empty
22 ensuremap.count= 1 and map[Empty] = v
23 end
24

25 map: MML MAP [MML SEQUENCE[BOOLEAN], G]
26 −− Map of paths to elements
27 end

Table 6: Examples of nonobvious models: classesSET and BINARY TREE from Eiffel-
Base2.

• How many contracts can be complete?

• Do executable accurate model-based contracts boost contract-based testing?

4.2.1 How many model classes?

Model-based contracts for EiffelBase used model classes for Booleans, integers, refer-
ences, (finite) sets, relations, and sequences. EiffelBase2 additionally required (finite)
maps, bags, and infinite maps and relations for special purposes (such as modeling
comparator objects). These figures suggest that a moderate number of well-understood
mathematical models suffices to specify a general-purpose library of data structures.

Determining to what extent this is generalizable to software other than libraries
of general-purpose data structures is an open question which belongs to future work.
Domain-specific software may indeed require complex domain-specific model classes
(e.g., real-valued functions, stochastic variables, finite-state machines), and applica-
tion software that interacts with a complex environment maybe less prone to accurate
documentation with models. However, even if writing model-based contracts for such
systems proved exceedingly complex, some formal model is required if the goal is for-
mal verification. In this sense, focusing model-based contracts on library software is
likely to have a great payoff through extensive reuse: the many clients of the reusable
components can rely on expressive contracts not only as detailed documentation but
also to express their own contracts and interfaces by combining a limited set of well-
understood, highly dependable components.

Another interesting remark is that the correspondence between the limited number
of model classes needed in our experiments and the classes using these model classes
is far from trivial: data structures are often more complex than the mathematical struc-
tures they implement. Consider, for example, classSET in Table 6: EiffelBase2 sets are
parameterized with respect to an equivalence relation, hence the model ofSET is a pair
of a mathematical set and a relation. Another significant example isBINARY TREE (also
in Table 6): instead of introducing a new model class for trees or graphs,BINARY TREE

17

2 mergeright (other: LINKED LIST [G])
3 −− Merge ‘other’ into current list after cursor position. Do not move cursor. Empty ‘other’.
4 do
5 . . .

6 other first element:= other.first element; other count:= other.count; other.wipe out
7 if beforethen first element:= other first element; active:= first element
8 else . . . end
9 count:= count+ other count

10 ensure
11 −− Original contract
12 count= old count+ old other.count; index= old index; other.is empty
13 −− Model based contract
14 sequence= old (sequence.front (index) + other.sequence+ sequence.tail (index+ 1))
15 end

Table 7: Faulty routinemergeright from classLINKED LIST.

concisely represents a tree as a map of paths to values; the model of a path is in turn a
sequence of Booleans.

4.2.2 How many complete contracts?

Reasoning informally, but rigorously, about the completeness of postconditions —
along the lines of Section 3.2 — proved to be straightforwardin our experiments. Only
18 (7%) out of 254 public features in EiffelBase with model-based contracts and 17
(4%) out of 403 public features in EiffelBase2 have incomplete postconditions. All of
them are examples of “intrinsic” incompleteness mentionedat the end of Section 3.2;
EiffelBase2, in particular, was designed trying to minimize the number of features with
intrinsically incomplete postconditions.

These results indicate that model-based contracts make it feasible to write system-
atically complete contracts; in most cases this was even relatively straightforward to
achieve. Unsurprisingly, using model-based contracts dramatically increases the com-
pleteness of contracts in comparison with standard DbC. Forexample, 42 (66%) out of
64 public features of classLIST in the original version of EiffelBase (without model-
based contracts) have incomplete postconditions, including 20 features (31%) without
any postcondition.

4.2.3 Contract-based testing with model-based contracts.

The standard EiffelBase library has been in use for many years and has been exten-
sively tested, both manually and automatically. Are the expressive contracts based on
models enough to boost automated testing finding new, subtlebugs? While prelimi-
nary, our experiments seem to answer in the affirmative. Applying the AutoTest testing
framework [19] on EiffelBase with model-based contracts for 30 minutes discovered
3 faults; none of them would have been detectable with standard contracts. Running
these tests did not require any modification to AutoTest or model classes, because the
latter include an executable implementation.

The 3 faults reveal subtle mistakes that have gone undetected so far. For example,
consider the implementation of routinemergeright in Table 7; the routine merges a linked

18

list other into the current linked list at the cursor position by modifying references in
the chain of elements. Thethen branch of theif statement (line 6) deals with the special
case where the cursor in the current list isbeforethe first element; in this case the first
element of the current list (first element) will point directly to the first element of the
other list (other first element). This is not sufficient, as the routine should also link the end
of the other list to the front of the current one, otherwise all elements in the current
list become inaccessible. The original contract does not detect this fault; the clause
count= old count+ old other.count is in particular satisfied ascount is updated anyway (line
8), but its value does not reflect the actual content of the newlist. On the contrary, the
complete model-based contract (line 13) specifies the desired configuration of the list
after executing the command, which leads to easily detecting the error.

5 Related work

Every fully formal specification ultimately boils down to a mathematical model, and
the research on formal modeling and analysis is so extensiveand diverse that it cannot
be summarized concisely. This section focuses on a few majorapproaches to the formal
specification of object-oriented abstract data types that adopt a stance similar to that of
the present paper: using highly expressive mathematical models geared towards the
full functional correctness specification (and verification) of complex data structures.

Hoare pioneered the usage of mathematical models to define and prove correctness
of data type implementations [13]. This idea spawned much related work, which can
be roughly partitioned in three major lines: algebraic notations, descriptive notations,
and design-by-contract approaches. The following subsections shortly summarize the
main features of each of these techniques; then, Section 5.4describes the approaches
based on mathematical models that are closest to the presentpaper.

5.1 Algebraic notations

Algebraic notations formalize classes in terms of (uninterpreted) functions and axioms
that describe the mutual relationship among the functions.For example, the axiom
s.insert(x).member of(x) = True defines the mutual semantics of the operations
insert andmember of of a set data type. The most influential work in algebraic speci-
fications is arguably Guttag and Horning’s [11] and Gougen etal.’s [10], which gave a
foundation to much derivative work. The former was also madepractical in the Larch
project [12], and introduced a notion ofcompletenessthat differs from the one of the
present paper (see Section 3.2), and applies to whole types,not single features.

Algebraic notations emphasize the calculational aspect ofa specification. This
makes them very effective notations to formalize and verifydata types at a high level
of abstraction. In particular, the close connection between rewriting systems [7] and al-
gebraic definitions enables, in many practical cases, the automated or semi-automated
verification of consistency and completeness [11] requirements of abstract specifica-
tions. The algebraic approach, on the other hand, does not integrate as well with real
programming languages to document implementations in the form of pre and postcon-
ditions of single operations.

19

5.2 Descriptive notations

Descriptive notations formalize classes in terms of simpler types — ultimately grounded
in simple mathematical models such as sets and relations — and operations defined as
input/output relations (that is, pre and postconditions) constrained by logic or arith-
metic formulas. For example, theinsert operation of a set data structure could be de-
fined by the formula∀s, x • [[s.insert(x)]] = [[s]] ∪ {x}, in terms of the union operation
applied to a model set[[s]].

Descriptive notations can be used in isolation to build language-independent mod-
els, or to give a formal semantics to concrete implementations. Languages and meth-
ods such as Z [25], B [1], and VDM [14] pursue the former approach, usually within
a top-down development framework. Other specification languages and tools such as
RESOLVE [20], AAL [15], and Jahob [26] are examples of the latter approach for the
programming languages C++ and Java.

Descriptive notations are apt to develop correct-by-construction designs and to ac-
curately document implementations, often with the goal of verifying functional cor-
rectness. Using them in contracts, however, introduces a new notation on top of the
programming language, which requires additional effort and expertise from the pro-
grammer and makes it more difficult to to maintain the specification synchronized with
the actual implementation. This weakness is shared by algebraic notations alike.

5.3 Design-by-contract approaches

Design by contract [18] introduces formal specifications inprograms using the same
notation for implementation and annotations, in an attemptto make writing the con-
tracts as congenial as possible to programmers. The Eiffel programming language
[8] epitomizes the design by contract methodology, together with similar solutions for
other languages such as APP [22] for C, Spec# [2] for C#, and many others.

As we discussed also in the rest of the paper, using a subset ofthe programming lan-
guage in annotations helps programmers writing them [3], but it often does not provide
enough expressive power to formalize (easily) “complete” functional correctness, or
requires cumbersome workarounds to capture the semantics of mathematical concepts
in terms of programming language constructs.

5.4 Model-based annotation languages

The Java Modeling Language (JML) [17, 16] is likely the approach that shares the most
similarities with ours: JML annotations are based on a subset of the Java programming
language and the JML framework provides a library of model classes mapping mathe-
matical concepts. While sharing a common outlook, the approaches in JML and in the
present paper differ in several details pertaining scope and technical aspects.

At the technical level, JML prefers model variables [5] while our approach lever-
ages model queries that return the value of immutable model classes; each approach has
its merits, but model queries have the advantage of supporting an axiomatic definition
that is easily grounded in an underlying mathematical theory, and facilitate a seamless
integration with traditional contracts — also typically based on queries. Section 3.1

20

discusses other advantages of model queries. A notational difference is that JML ex-
tends Java’s expressions with notations for logic operators and quantifiers, while our
method does not extend Eiffel’s syntax and reuses notation such as agents to express
quantifications and other aspects that belong to expressivespecifications.

In terms of scope, our approach strives to be more methodological and systematic,
with the primary target of fully contracting a complete library of data structures. Our
method tries to keep the additional effort required to the programmer to a minimum.
Finally, let us remark that our usage scenarios are multi-faceted, ranging from spec-
ification and design (also supporting notions such as completeness), to verification,
runtime checking, and automated testing.

The present paper extends in scope the previous work of ours on model-based
classes [24, 23], and systematically applies the results tothe re-design and re-imple-
mentation of a rich library of data structures. The experience gained in this practical
application also prompted us to refine and rediscuss aspectsof the previous approach,
as we discussed at length in the rest of the paper.

6 Conclusions and future work

The present work introduces a methodology to write strong interface specifications for
reusable object-oriented components. The methodology is soundly based on expressive
models based on mathematical notions and features a notion of specification complete-
ness which is formal, yet easy to reason about. The application of the methodology to
the development of a library of general-purpose data structures demonstrates its prac-
ticality and its many uses in analysis, design, and verification.

Future work includes short- and long-term goals. Among the former, we plan to
apply model-based contracts to more real-life examples, including application software
from diverse domains. A user study will try to confirm the preliminary evidence that
model-based contracts are easy to write, understand, and reason about informally.

Longer term work will integrate model-based contracts within a comprehensive
verification environment. This will require, in particular, significant developments in
the techniques for proofs and tests with model-based contracts. Work on proofs will
include dealing systematically with the frame problem and extensions of the model-
based contract methodology to non-public features, including abstraction functions,
representation invariants, and loop invariants. Work on testing will focus on optimizing
the runtime performance of model classes.

References

[1] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge Univer-
sity Press, New York, NY, USA, 1996.

[2] M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino, W. Schulte,
and H. Venter. The Spec# programming system: Challenges anddirections. In
Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Confer-

21

ence (VSTTE 2005), volume 4171 ofLecture Notes in Computer Science, pages
144–152. Springer, 2008.

[3] P. Chalin. Are practitioners writing contracts? InRigorous Development of
Complex Fault-Tolerant Systems (RODIN Book), volume 4157 ofLecture Notes
in Computer Science, pages 100–113. Springer, 2006.

[4] J. Charles. Adding native specifications to jml. InIn Workshop on Formal Tech-
niques for Java-like Programs (FTfJP, 2006.

[5] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Modelvariables: cleanly
supporting abstraction in design by contract.Softw. Pract. Exper., 35(6):583–599,
2005.

[6] A. Darvas and P. Müller. Faithful mapping of model classes to mathematical
structures. InSAVCBS ’07: Proceedings of the 2007 conference on Specification
and verification of component-based systems, pages 31–38, New York, NY, USA,
2007. ACM.

[7] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 243–320. Elsevier
and MIT Press, 1990.

[8] ECMA International. Standard ECMA-367. Eiffel: Analysis, Design and Pro-
gramming Language. 2nd edition, June 2006.

[9] http://freeelks.svn.sourceforge.net.

[10] J. A. Gougen, J. W. Thatcher, and E. G. Wagner. An initialalgebra approach
to the specification, correctness, and implementation of abstract data types. In
R. Yeh, editor,Current Trends in Programming Methodology, volume IV, pages
80–149. Prentice Hall, 1978.

[11] J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types.
Acta Inf., 10:27–52, 1978.

[12] J. V. Guttag, J. J. Horning, S. J. Garl, K. D. Jones, A. Modet, and J. M. Wing,
editors. Larch: Languages and Tools for Formal Specification. Springer-Verlag,
1993.

[13] C. A. R. Hoare. Proof of correctness of data representations.Acta Inf., 1:271–281,
1972.

[14] C. B. Jones.Systematic software development using VDM. Prentice-Hall, 2nd
edition, 1990.

[15] S. Khurshid, D. Marinov, and D. Jackson. An analyzable annotation language. In
OOPSLA, pages 231–245, 2002.

22

[16] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for java.SIGSOFT Softw. Eng. Notes, 31(3):1–
38, 2006.

[17] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of
JML accommodates both runtime assertion checking and formal verification.Sci.
Comput. Program., 55(1-3):185–208, 2005.

[18] B. Meyer. Object-oriented software construction. Prentice Hall, 2nd edition,
1997.

[19] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs that test
themselves.Computer, 42(9):46–55, 2009.

[20] W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H. Zweben. The RE-
SOLVE framework and discipline.ACM SIGSOFT Software Engineering Notes,
19(4):23–28, 1994.

[21] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study of programmer-
written and automatically inferred contracts. InISSTA ’09: Proceedings of the
eighteenth international symposium on Software testing and analysis, pages 93–
104, New York, NY, USA, 2009. ACM.

[22] D. S. Rosenblum. Towards a method of programming with assertions. InICSE,
pages 92–104, 1992.

[23] B. Schoeller.Making classes provable trough contracts, models and frames. PhD
thesis, ETH Zurich, 2007.

[24] B. Schoeller, T. Widmer, and B. Meyer. Making specifications complete through
models. InArchitecting Systems with Trustworthy Components, pages 48–70,
2004.

[25] J. Woodcock and J. Davies.Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[26] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of linked data
structures. InProceedings of the ACM SIGPLAN 2008 Conference on Program-
ming Language Design and Implementation (PLDI’08), pages 349–361. ACM,
2008.

23

	1 Introduction
	2 Motivation and overview
	2.1 Some limitations of Design by Contract
	2.2 Enhancing Design by Contract with models

	3 Foundations of model-based contracts
	3.1 Specifying classes with models
	3.1.1 Interfaces, references, and objects.
	3.1.2 Abstract object space.
	3.1.3 Model classes.
	3.1.4 Model queries.
	3.1.5 Model-based contracts.
	3.1.6 Inheritance and model-based contracts.

	3.2 Completeness of contracts
	3.2.1 Soundness and completeness of a model-based contract.
	3.2.2 Soundness and completeness in practice.

	3.3 Verification: proofs and runtime checking
	3.3.1 Proofs.
	3.3.2 Runtime checking and testing.
	3.3.3 Consistency of tests and proofs.

	4 Model-based contracts at work
	4.1 Case studies
	4.2 Results and discussion
	4.2.1 How many model classes?
	4.2.2 How many complete contracts?
	4.2.3 Contract-based testing with model-based contracts.

	5 Related work
	5.1 Algebraic notations
	5.2 Descriptive notations
	5.3 Design-by-contract approaches
	5.4 Model-based annotation languages

	6 Conclusions and future work

