Skip to main content

Benchmarking Spatial Data Warehouses

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2010)

Abstract

Spatial data warehouses (SDW) enable analytical multidimensional queries together with spatial analysis. Mainly, three operations are related to SDW query processing performance: (i) joining large fact tables and large spatial and non-spatial dimension tables; (ii) computing one or more costly spatial predicates based on spatial ad hoc query windows; and (iii) aggregating data according to different spatial granularity levels. Several techniques to improve the query processing performance over SDW have been proposed in the literature. However, we identified the lack of a benchmark to carry out a controlled experimental evaluation of such techniques and, principally, to effectively measure the costs of the aforementioned three complex operations. In this paper, we propose a novel spatial data warehouse benchmark, called Spadawan, to provide performance evaluation environments for SDW and enable a further investigation on spatial data redundancy. The Spadawan benchmark is available at http://gbd.dc.ufscar.br/spadawan .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kimball, R., Ross, M.: The data warehouse toolkit: the complete guide to dimensional modeling. John Wiley & Sons, Inc., Chichester (2002)

    Google Scholar 

  2. Malinowski, E., Zimányi, E.: Advanced data warehouse design: from conventional to spatial and temporal applications (data-centric systems and applications). Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Trans. Knowl. Data Eng. 12(6), 938–958 (2000)

    Article  Google Scholar 

  4. Fidalgo, R., Times, V.C., Silva, J., Souza, F.F.: GeoDWFrame: a framework for guiding the design of geographical dimensional schemas. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 26–37. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Rivest, S., Bédard, Y., Proulx, M., Nadeau, M., Hubert, F., Pastor, J.: SOLAP technology: merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. J. of Photogrammetry and Remote Sensing 60, 17–33 (2005)

    Article  Google Scholar 

  6. Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Oliveira, A.G., Ciferri, R.R.: The impact of spatial data redundancy on SOLAP query performance. J. Braz. Comp. Soc. 15(2), 19–34 (2009)

    Article  Google Scholar 

  7. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web commerce. SIGMOD Record 29(4), 64–71 (2000)

    Article  Google Scholar 

  8. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented fact table indexing. In: TPCTC, pp. 237–252 (2009)

    Google Scholar 

  9. Poess, M., Smith, B., Kollar, L., Larson, P.: TPC-DS, taking decision support benchmarking to the next level. In: SIGMOD, pp. 582–587 (2002)

    Google Scholar 

  10. Paton, N.W., Williams, M.H., Dietrich, K., Liew, O., Dinn, A., Patrick, A.: VESPA: a benchmark for vector spatial databases. In: Jeffery, K., Lings, B. (eds.) BNCOD 2000. LNCS, vol. 1832, pp. 81–101. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Günther, O., Oria, V., Picouet, P., Saglio, J., Scholl, M.: Benchmarking spatial joins à la carte. In: SSDBM, pp. 32–41 (1998)

    Google Scholar 

  12. Theodoridis, Y., Silva, J.R., Nascimento, M.A.: On the generation of spatiotemporal datasets. In: SSD, pp. 147–164 (1999)

    Google Scholar 

  13. Malinowski, E., Zimányi, E.: Spatial hierarchies and topological relationships in the spatial MultiDimER model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 17–28. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  15. Aoki, P.M.: “Generalizing “search” in generalized search trees”. In: ICDE, pp. 380–389 (1998)

    Google Scholar 

  16. Siqueira, T.L.L., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: A spatial Bitmap-based index for geographical data warehouses. In: ACM SAC, pp. 1336–1342. ACM, Inc., New York (2009), http://doi.acm.org/10.1145/1529282.1529582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siqueira, T.L.L., Ciferri, R.R., Times, V.C., de Aguiar Ciferri, C.D. (2010). Benchmarking Spatial Data Warehouses. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2010. Lecture Notes in Computer Science, vol 6263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15105-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15105-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15104-0

  • Online ISBN: 978-3-642-15105-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics