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Abstract. Frequent sub-graph mining entails two significant overheads.
The first is concerned with candidate set generation. The second with
isomorphism checking. These are also issues with respect to other forms
of frequent pattern mining but are exacerbated in the context of frequent
sub-graph mining. To reduced the search space, and address these twin
overheads, a weighted approach to sub-graph mining is proposed. How-
ever, a significant issue in weighted sub-graph mining is that the anti-
monotone property, typically used to control candidate set generation, no
longer holds. This paper examines a number of edge weighting schemes;
and suggests three strategies for controlling candidate set generation.
The three strategies have been incorporated into weighted variations of
gSpan: ATW-gSpan, AW-gSpan and UBW-gSpan respectively. A com-
plete evaluation of all three approaches is presented.

Keywords: Weighted Transaction Graph Mining, Weighted Frequent
Sub-graph Mining, Weighting Schemes.

1 Introduction

Graph mining is concerned with the identification of patterns within graph data
of various forms. One form of graph mining is frequent sub-graph mining which
aims to identify frequently occurring patterns (sub-graphs) across a collection
of “small” graphs or within one “large” graph. This paper concentrates on the
first (also sometimes referred to as transaction graph mining).

Frequent sub-graph mining techniques [3, 5, 6, 8, 11, 12] have parallels with
more established frequent pattern mining techniques such as those used in, for
example, Association Rule Mining (ARM). Thus, in common with other forms
of frequent pattern mining, frequent sub-graph mining entails two significant
overheads: candidate set generation and isomorphism checking. However, these
overheads are exacerbated because of the nature of graph data. In the case of
candidate set generation the potential number of size K+1 sub-graphs that can
be generated from size K graphs is exponentially greater than in the case of
more standard forms of frequent pattern mining. With respect to isomorphism
checking, the process of comparing a candidate pattern with the input data to



determine the support (frequency) of the candidate is significantly more complex
in the case of frequent sub-graph mining than in more standard forms of frequent
pattern mining such as ARM.

The overheads associated with frequent sub-graph mining are compounded
when the support threshold is low. The solution advocated in this paper is based
on the observation that, for many applications, some edges (nodes) in the in-
put graph set can be considered to be more significant than others. Therefore,
sub-graph patterns that include edges (nodes) with high weight values should
be considered more important than those with low weight values if they both
satisfied the support threshold. This concept is illustrated in this paper by con-
sidering a social network mining scenario.

Weighted frequent sub-graph mining advocates the use of weighted support
counts to identify weighted frequent sub-graphs. Hence, the “computational bur-
den” of sub-graph mining can be considerably alleviated by generating a set of
weighted frequent sub-graphs. The concept of edge weightings can be encapsu-
lated in a number of ways (for reasons of clarity only edge weighted graphs are
considered in this paper although much of the discussion is equally applicable
to to node, or node and edge, weighted graphs).

Regardless of whether edge or node weighting is adopted, a significant issue
encountered in weighted sub-graph mining is that the anti-monotone property,
whereby if a K size sub-graph is not frequent none of its K+1 super-graphs will
be frequent, typically used to restrict the size of the search space in standard
pattern mining, no longer holds if weightings are applied in a naive manner. Thus
any proposed weighted sub-graph mining mechanism must either be defined in
such a way that the property continues to hold, or an alternative pruning strategy
must be adopted.

Three edge weighting schemes are considered in this paper: (i) Average Total
Weighting (ATW), (ii) Affinity Weighting (AW) and (iii) Utility Based Weight-
ing (UBW). The three approaches have been incorporated into three weighted
variations of the gSpan algorithm (ATW-gSpan, AW-gSpan, and UBW-gSpan).

The rest of this paper is organised as follows. A problem definition overview is
presented in Section 2. The proposed edge weighting mechanisms are considered
in Section 3. Experiments to evaluate the proposed techniques, and the ensuing
results, are presented in Section 4. Some conclusions are presented in Section 5.

2 Problem Definition

This section introduces the necessary graph-theoretic and mining definitions.
In the context of this paper a graph is defined as a finite structure G formed
by a set of nodes V = {v1, v2, . . .}, a set of edges E = {e1, e2, . . .}, a set of
vertex and edge labels L, and a mapping φv/e : L → V/E. With respect to the
work described here the edge labels are assumed to be numeric so that they can
be used in the calculation of relative weightings. Depending on the particular
application, edges will be either undirected pairs over V , or directed (ordered)
pairs.



Let T = {G1, G2, · · · , Gt} be a collection of (transaction) graphs. The support
set of g is defined as δT (g) = {t|g ⊆ Gt}, i.e. the set of transaction graphs where
g is a sub-graph of Gt. The cardinality of the support set, |δT (g)| then defines
the support of g with respect to T .

Definition 1. Given a database T , a graph g, and a minimum support τ ∈ (0, 1],
the graph g is said to be frequent (in T ) if |δT (g)| ≥ τ×t. The frequent sub-graph
mining problem is thus to find all the frequent sub-graphs in T .

The focus of this paper is on edge weighted graphs. Therefore, the graphs in T
are assumed to have weights associated with their edges. Let WT be a weighting
function that assigns a weight to any sub-graph g. The weighted support of g
with respect to T , wsupT (g), is then:

wsupT (g) = WT (g)× |δT (g)|. (1)

Note that the function of WT (g) needn’t be a number between zero and one. By
defining the weighting function, WT (g), in an appropriate manner it is possible
to ensure that the anti-monotone property holds; otherwise other method, such
as some heuristic based pruning technique, is required to limit the search space.

3 Graph Weighting Mechanisms

Most research work in frequent sub-graph mining [5,6,8,11] assumes each discov-
ered frequent sub-graph is equally important. A lot of redundant and repetitive
frequent patterns may therefore exist in the final result. If the size of the graph
set is substantial and the minimum support threshold is very low, a typical fre-
quent sub-graph mining task can often not be completed within a fixed period of
time due to the exponential complexity of the search space. If we put emphasis on
differentiating each discovered frequent sub-graph according to its importance,
either as definded by the user or derived from the application domain, the com-
putational complexity can be reduced without compromising the effectiveness
of the frequent pattern discovery process. However, when a weighting scheme is
integrated into the process of graph mining in a naive manner, the well-known
anti-monotone property, which is used frequently to reduce the search space, may
no longer be satisfied. Two strategies can be identified to address this dilemma:
(a) adopt an interestingness measure which does satisfy the property; (b) ignore
the property and adopt some alternative heuristic to reduce the computational
overhead incurred by not satisfying the property.

In the context of weighted frequent sub-graph mining, weightings associated
with a sub-graph pattern g can be defined in a number of manners. Three ap-
proaches are introduced in this paper: (i) Average Total Weighting (ATW), (ii)
Affinity Weighting (AW), (iii) Utility Based Weighting (UBW). The first two
approaches satisfy the anti-monotone property while the last one adopts an al-
ternative pruning heuristic. The last two approaches employ two parameters to
control the mining result while the first one uses one parameter only. Each ap-
proach is discussed in more detail below. Each approach is discussed in further
detail in the following three subsections.



3.1 Average Total Weighting (ATW)

In the ATW approach inspired by the work [10], the weight for a sub-graph g is
calculated by dividing the sum of the average weights in graphs that contain g
with the sum of the average weights across the entire data set T . Thus:

Definition 2. Given an edge weighted graph g with edge weights {w1, w2, · · · , wk},

the average weight associated with g is defined as Wavg(g) =

∑
k

i=1
wi

k .

Where wi can be user defined or calculated by some weighting methods.

Definition 3. Given a set of graphs T = {G1, G2, · · · , Gt}, the total weight of
this set of graphs is defined as Wsum(T ) =

∑t
i=1 Wavg(Gi).

Definition 4. Given an arbitrary sub-graph g with its support set δT (g), the
weight function of g with respect to T , WT (g), is defined as

WT (g) =

∑
Gi∈δT (g) Wavg(Gi)

Wsum(T )
(2)

Definition 5. A sub-graph g is weighted frequent with respect to T , if |δ(g)| ×
WT (g) ≥ τ × t, where 0 < τ ≤ 1 is a minimum support threshold.

From the above it can be easily inferred that the function WT (g), as defined
by Equation 2, satisfies the anti-monotone property. Therefore, if a k-candidate
is not frequent, then any of its (k + 1)-supersets can be safely pruned from this
branch in the lattice of candidates during the k+1 candidate generation process.
It should be noted, however, that the approach will tend to bias large transaction
graphs over smaller transaction graphs, thus is best applied to graph sets where
the individual graphs are of a similar size.

3.2 Affinity Weighting (AW)

The Affinity Weighting (AW) approach is founded on two elements to restrict
the growth of the search space: (i) a graph distance measure, and (ii) a weighting
ratio. For a sub-graph g to be frequent both must be greater than specified user
thresholds. The graph distance measure is calculated using an appropriately
defined support weighting function, WT (g). This is defined as follows. Let g be
a candidate pattern for a database T = {G1, G2, · · · , Gt}. In the context of AW
we define:

WT (g) =
1

|V (g)|

∑

Gi∈δT (g)

|V (Gi)| − |V (g)|

|V (Gi)|
. (3)

Where V (Gi) is the set of vertices in transaction graph Gi and V (g) is the
set of vertices in the sub-graph g. Observe that WT (g) satisfies:

WT (g) =
|δT (g)|

|V (g)|
−

∑

Gi∈δT (g)

1

|V (Gi)|
(4)



It should be noted that adding nodes to g can only reduce the value of the
above expression because the support(|δT (g)|) cannot be increased; the sum con-
tains as many terms as |δT (g)| and each of these cannot be larger than 1/|V (g)|.
Thus WT (g) as defined above, insures that the weighted support of g is non-
increasing (i.e. anti-monotone) in |V (g)|.

The graph distance measure is directed at the number of nodes contained in
a graph, the weighting ratio concerned with the edge weights (which are assumed
to reflex numeric values). The weighting ratio of an edge-weighted graph g is a
function c(g) returning a value between zero and one which is decreasing in the
number of edges of g. Given an edge weighted sub-graph g with edge weights
W = {w1, w2, · · · , wk} the weighting ratio function which is similar to [13], c(g),
is defined as follows:

c(g) =
MINwi∈W {wi}

MAXwj∈W {wj}
. (5)

Definition 6. An edge-weighted graph g is a weighted frequent (i.e. weighted
affinity) pattern within a data set T = {G1, G2, · · · , Gt}, with respect to a support
threshold τ > 0 and weighting ratio threshold γ ∈ [0, 1], if the following two
conditions (C1 and C2) are satisfied:

(C1) wsupT (g) ≥ τ × t, and (C2) c(g) ≥ γ.

Definition 6 leads to an alternative pruning strategy which, may be used as
part of any frequent sub-graph mining algorithms. During the candidate selection
phase, the mining will keep track of the weighted support and weighting ratio of
all candidates and discard all those candidates that do not satisfy at least one
of (C1) and (C2).

3.3 Utility Based Weighting (UBW)

The previous two approaches both satisfy the anti-monotone property. In this
section an alternative weighting scheme which does not hold the property is
proposed. The Utility Based Weighting (UBW) scheme is influenced by ideas
suggested in [1, 2]. As in the case of AW scheme, the UBW scheme is founded
on two elements: (i) weighted support and (ii) the share (SH) of a sub-graph.
Thus:

Definition 7. Given a sub-graph g with edges E(g) = {e1, e2, · · · , ek}. For each
ei ∈ E(g), two vertices connecting ei are v1 and v2. Their associated support
sets (the graphs in T where they appear) are given as δT (v1) and δT (v2). The
Jaccard similarity coefficient between the two vertices is defined as jC(ei) =
|δT (v1) ∩ δT (v2)|/|δT (v1) ∪ δT (v2)|. The weighting function of g, WT (g), is then
defined as

WT (g) =
1∑

ei∈E(g) jC(ei)
(6)

From the above it is clear that WT (g) satisfies the anti-monotone property. From
Section 2 the weighted support is given by wsupT (g) = WT (g)× |δT (g)|.



Definition 8. Given an edge weighted graph set T = (G1, . . . , Gt) with edge
weights {w1, w2, · · · , wk} for each transaction graph Gj and a sub-graph g. Let
g ⊆ Gj, the weight of g denoted as W (g,Gj), is the sum of the weights of
the edges which occurred in Gj. That is, W (g,Gj) =

∑
ei∈g,g⊆Gj

wi. The to-

tal weight of T , denoted as TW (T ), represents the sum of edge weights in T ,
where TW (T ) =

∑
Gj∈T

∑
ei∈Gj

wi. The total weight of δT (g), is defined as

TW (δT (g)) =
∑

Gj∈δT (g)

∑
ei∈Gj

wi.

Definition 9. The graph weight of g with respect to T , denoted as GW (g), is
the sum of the weight of the g in each transaction graph Gj ∈ δT (g). That is,
GW (g) =

∑
Gj∈δT (g) W (g,Gj).

Definition 10. The share of a sub-graph g, denoted as SH(g), is the ratio of
the graph weight of g with respect to T to the total weight of T . Thus:

SH(g) =
GW (g)

TW (T )
(7)

Given a share threshold λ, a sub-graph g is SH-frequent if SH(g) ≥ λ; otherwise,
g is SH-infrequent.

Theorem 1. Given a T = (G1, . . . , Gt), a sub-graph g, and a threshold λ, if
TW (δT (g)) < λ× TW (T ), all super-graphs of g are SH-infrequent.

Proof. Let h be an arbitrary super-graph of g. Clearly, GW (h) ≤ TW (δT (h)) ≤
TW (δT (g)). If TW (δT (g)) < λ× TW (T ) holds, GW (h) < λ× TW (T ). That is,
SH(h) = GW (h)/TW (T ) < λ. Therefore, h is SH-infrequent. ⊓⊔

By Theorem 1, if TW (δT (g)) < λ× TW (T ), all super-graphs of g and g are
SH-infrequent and can be pruned; otherwise, g is a candidate sub-graph.

Definition 11. An edge-weighted graph g is a weighted frequent pattern for a
graph set T = (G1, . . . , Gt) with respect to a support threshold τ > 0 and share
threshold λ ∈ (0, 1] if the following two conditions are satisfied.

(D1) wsupT (g) ≥ τ × t, and (D2) SH(g) ≥ λ.

4 Experiments and Results

This section describes a sequence of experiments designed to:

(i) Demonstrate that the proposed weighting schemes can more efficiently gen-
erate frequent sub-graphs than without using weightings. In many cases,
as will be demonstrated, use of the weighting schemes allows frequent
sub-graphs to be identified where this would not be possible using an un-
weighted approach because of this computational overhead the latter would
entail.



Table 1. CTS graph set statistics

Norfolk Cornwall GB

# graphs 53 53 53
Max # edges 77 412 30107
Average # edges 54 262 23055
Max # nodes 99 409 23660
Average # nodes 70 284 18749
node label count 614 2195 81153
Edge label count 6 12 46

(ii) Compare and contrast the three proposed weighted sub-graph mining tech-
niques.

The experiments were conducted using a projection of the cattle movement
database in operation in Great Britain (GB). This application domain is de-
scribed in Section 4.1. The original gSpan algorithm available to the authors
could not process directed graphs with self cycles. Therefore an extended gSpan
algorithm (extGspan), which can process directed graphs with self cycles, was
implemented in order to compare the proposed weighted approaches with the
un-weighted case. Results from the experiments are presented in Sub-sections
4.2 and 4.3.

4.1 The Cattle Tracking System Database

For the experiments the Cattle Tracking System (CTS) database, in operation in
GB, was used. This was provided by the Department for the Environment, Food
and Rural Affairs (DEFRA) from the Rapid Analysis and Detection of Animal
Risk (RADAR) project1. The database provides a record of cattle movements.
Each record includes information such as the sender and receiver location IDs,
animal ID, animal breed, etc. Three distinct transaction graph datasets were
extracted from the CTS database such that nodes represented cattle location
(farms, markets, slaughter houses, etc) and edges the movement of cattle be-
tween locations (the edges are directed by the direction of the cattle movement).
Transaction graph sets for all of Great Britain (GB), and two areas within GB
(Norfolk and Cornwall) were extracted. Edges were annotated with a weight-
ing, indicating the number of cattles moved, and a label, indicating the type of
movement (e.g. farmToFarm, farmToMarket, etc). For each data set the data
from 1 January 2005 to 31 December 2005 was selected and divided into 7-day
“episodes” due to the 6-day movement restriction [9] that applies to farms in
GB. Statistics for each of the data sets are given in Table 1. Note that the GB
data set is significantly larger than the Cornwall2, which in turn was larger than
the Norfolk data set. It should also be noted that all the transaction graphs
feature directed edges and self cycles.

1 http://www.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/radar/project.htm
2 Cornwall is a county in the SW of GB known for its substantial dairy herds
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Fig. 1. Performance comparison of weighting schemes vs. extGspan on Norfolk and
Cornwall data sets (using a range of support values from 5% to 30%)

4.2 Comparison Between Weighted and Non-Weighted Approaches

In this subsection the proposed weighting schemes (ATW-gSpan, AW-gSpan,
and UBW-gSpan) are compared with the extended gSpan algorithm in terms
of efficiency (runtime and the number of frequent sub-graphs generated). For
AW-gSpan, γ = 0.6 was chosen as the weighgting ratio threshold, and λ = 8%
was used as the share threshold for UBW-gSpan. The judstification for these γ
and λ values is given in Sub-section 4.3 below.

Figure 1 shows the performance of the weighting schemes and extGspan on
the Norfolk and Cornwall data sets (recall that extGspan does not make any
use of weightings). It can be clearly seen from the figure that all four algorithms
display a similar behaviour when the support value is between 10% to 30%,
however the number of patterns generated by the extGspan algorithm increase
abruptly when the support value is decreased to below 10%. From Figure 1
it can be observed that: (i) significantly more frequent sub-graphs (at support
threshold below 10%) are found using the non-weighted extGspan algorithm than
using any of the weighting schemes, indicating the advantages offered using the
weighted approaches, (ii) the ATW and AW schemes run faster than the UBW
scheme, this is because the pruning technique adopted by UBW schem is not
strong enough compared with the anti-monotone based pruning methods used
by ATW and AW schemes.

Experiments (not shown) using extGspan and the GB data set failed to
produce any results (because of memory errors) unless the support thresholod



was set to 30% or above, a threshold at which only one node size sub-graph
are discovered. Thus it was not possible to conduct any meaningful comparison
between the weighted frequent sub-graph mining algorithms and a non-weighted
approach using the GB data set.
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Fig. 2. Performance comparison of three weighting schemes using the GB data set

4.3 Comparison of Weighting Schemes

In this subsection the three proposed weighting schemes are compared with one
another using the large GB dataset. As above, γ was initially set to 0.6 and λ
to 8% for use with AW-gSpan and UBW-gSpan algorithms. Figure 2 shows the
performance of the weighting schemes on the GB dataset. In Figure 2 (a), each
curve depicts the number of patterns generated against the minimum support
value used. From the figure it can be seen that UBW-gSpan produces the least
number of patterns while AW-gSpan produces the most. Figure 2 (b) indicates
the “run time” for the approaches using the same sequence of support threshold
values. From the figure it can be seen that UBW-gSpan is the most “expensive”,
indicating that the cost of finding a minimum number of patterns is higher
compared to the other two mechanisms. ATW-gSpan is the most economical.
Reference to Figures 1(a) and (b) confirm these results. UBW-gSpan is also
expensive with respect to theNorflok and Cornwall data sets. In fact inspection



of Figures 1(a) indicates that UBW-gSpan is more expensive than applying
extGspan in the case of theNorfolk data indicating that the cost of reducing
the number of patterns is high when using UBW-gSpan. Although it should be
noted that with respect to the GB data set extGspan was unable to process
this data set at all (using realistic support thresholds). It is interesting to note
in Figure 2 (b) that as the support threshold is reduced the effect on run-time
is much smaller for ATW-gSpan than the other two weighting schemes. More
generally, from Figure 2, it can be seen that (as might be expected) runtime
increases significantly as the support threshold is reduced.

Figure 3 displays the effect on performance of different values for the weight-
ing ratio threshold (γ) used in conjunction with AW-gSpan, and the share thresh-
old (λ) used with UBW-gSpan, for a range of support threshold values from 4%
to 12%. From Figures 3 (a) and (c) it can be seen that the run time increased
as the γ value is decreased, while a marginal increase in the number of patterns
is witnessed. With respect to Figures 3 (b) and (d) it can be seen that the run
time increases as the λ value is decreased, while a small corresponding increase
in the number of identified patterns is witnessed. However, increasing the λ value
beyond 8% seems to have very little effect on the number of patterns. Overall it
was found that a γ value of 0.6 and a λ value of 0.8% was the most appropriate.
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4.4 Quality of Results

The above experiments indicate that the proposed weighting approaches can be
successfully applied so that frequent sub-graphs can be identified in large col-
lections of graphs (such as those extracted from the CTS database) which could
not otherwise be mined using more conventional graph mining approaches. The
proposed weighting mechanisms operate by identifying the most “significant”
edges. The question that remains is then to ask “are we finding the right frequent
sub-graphs?”. To answer this question the research team applied the weighting
techniques to a number of classification problems. Two data sets were used, an
MRI scan data set and a text mining data set where the scans and documents
had been processed into a graph representation and labelled. Weighted graph
mining techniques were then applied to the graph sets to produce collections
of frequent sub-graphs. These sub-graphs were then interpreted as features in a
feature space and used to represent the individual records using a standard fea-
ture vector representation (where each element represents a frequent sub-graph).
Standard classification algorithms were then applied. The results generated were
comparable with results obtained using alternative, more conventional, classifica-
tion approaches thus indicating that the “right sub-graphs” had been identified.
Space limitations prevent a full presentation and discussion of these results in
this paper, however interested readers can refer to [4] and [7] for reports on the
MRI scan and text mining experiments respectively.

5 Conclusions

This paper has proposed a solution to frequent sub-graph mining where the
size of the input data is such that standard graph mining algorithms (such as
gSpan) are unable to derive any appropriate results because of the computa-
tional overheads involved. Three weighting mechanisms are proposed (ATW-
gSpan, AW-gSpan, and UBW-gSpan) designed to reduce to overall search space
by identifying the most relevant sub-graphs. The weighting schemes assume edge
weightings, but similar techniques may be applied with respect to nodes. Exper-
iments comparing the operation of the weighting schemes to a non-weighted
version of gSpan indicate that many fewer patterns are derived. The research
team have established that the reduced pattern set are the “right” pattern set
by applying the results using classification scenarios. The reported experiments
indicate that UBW-gSpan finds the least number of patterns will requiring the
largest amount of run-time. ATW-gSpan provides the best compromise, a limited
number of patterns found in reasonable time (especially at low support thresh-
old values). Experiments were also conducted with respect to the most suitable
γ and λ to be used with respect to AW-gSpan and UBW-gSpan respectively.
Overall it was found that a γ value of 0.6 and a λ value of 0.8% was the most
appropriate.
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