Skip to main content

Soft Computing Approaches to the Problem of Infant Cry Classification with Diagnostic Purposes

  • Chapter
Soft Computing for Recognition Based on Biometrics

Abstract

Although the scientific field known as infant cry analysis is close to celebrate its 50 anniversary, considering the Scandinavian experience as the starting point, until now none reliable cry-based clinical routines for diagnosis has been successfully achieved. Nevertheless in support of that goal some expectations are appearing when new automatic infant cry classification approaches displaying potentialities for diagnosis purposes are added to the traditional perceptive approach and direct spectrogram observation practice. In this paper we present some of those classification approaches and analyze their potentials for newborn pathologies diagnosis as well. Here we describe some classifiers based on soft computing methodologies, among them; one following the genetic-neural approach, an experimental essay with a hybrid classifier combining the traditional approach based on threshold classification and the classification approach with ANN, one more applying type-2 fuzzy sets for pattern matching, and one using fuzzy relational products to compress the crying patterns before classification. Experiments and some results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karelitz, S., Fisichelli, V.R.: The cry thresholds of normal infants and those with brain damage. J. Pediat. 61, 679–685 (1962)

    Article  Google Scholar 

  2. Parmelee, A.H.: Infant crying and neurologic diagnosis. J. Pediat. 61, 801–802 (1962)

    Article  Google Scholar 

  3. Wasz-Höckert, O., Lind, J., Vuorenkoski, V., Partanen, T., Valanne, E.: The infant cry a spectrographic and auditory analysis. Clinics in Devel. Medicine, 29 (1968)

    Google Scholar 

  4. Koivisto, M., Wasz-Höckert, O., Vuorenkoski, V., Partanen, T., Lind, J.: Cry studies in neonatal hyperbilirubinaemia. Acta Paediatr. Scand. Suppl. 206, 26–27 (1970)

    Article  Google Scholar 

  5. Wasz-öckert, O., Koivisto, M., Vuorenkoski, V., Partanen, T., Lind, J.: Spectrographic analysis of pain cry in hyperbilirubinemia. Biol. Neonate. 17, 260–271 (1971)

    Article  Google Scholar 

  6. Michelsson, K.: Sound Spectrographic cry analysyis of normal and abnormal newborns. Folia Phoniatria 28, 161–173 (1982)

    Google Scholar 

  7. Michelsson, K.: Cry analysis of symptomless low birth weight neonates and of asphyxiated newborn infants. Acta Paediatrica Scandinavica. Stockholm. Suppl. 216 (1971)

    Google Scholar 

  8. Michelsson, K., Sirviö, P., Wasz-Höckert, O.: Pain cry in full-term asphyxiated newborn infants correlated with late findings. Acta Paediatr. Scand. 66(5), 611–616 (1977)

    Article  Google Scholar 

  9. Sirviö, P., Michelsson, K.: Sound-spectrographic cry analysis of normal and abnormal newborn infants. Folia phoniat. 28, 161–173 (1976)

    Article  Google Scholar 

  10. Michelsson, K., Wasz-Höckert, O.: The value of cry analysis in neonatology and early infancy. In: Murry, T., Murray, J. (eds.) Infant Communication: Cry and Early Speech, pp. 152–182. College-Hill Press, Houston (1980)

    Google Scholar 

  11. Wasz-Höckert, O., Michelsson, K., Lind, J.: Twenty-five years of Scandinavian cry research. In: Lester, B.M., Boukydis, C.F.Z. (eds.) Infant Crying: Theoretical and Research Perspectives, pp. 83–104. Plenum Publishing Corporation, N. York (1985)

    Google Scholar 

  12. Golub, H.L., Corwin, M.J.: A physioacoustic model of the infant cry. In: Lester, B.M., Boukydis, C.F.Z. (eds.) Infant Crying: Theoretical and Research Perspectives, pp. 59–82. Plenum Press, N. York (1985)

    Google Scholar 

  13. Golub, H.L., Corwin, M.J.: Infant cry: a clue to diagnosis. Pediatrics 69(2), 197–201 (1982)

    Google Scholar 

  14. Lester, B.M.: A biosocial model of infant crying. In: Lipsitt, L.P. (ed.) Advances in Infancy Research, pp. 167–212. Academic Press, N. York (1984)

    Google Scholar 

  15. Rapisardi, G., Vohr, B., Cashore, W., Peucker, M., Lester, B.M.: Assessment of infant cry variability in high-risk infants. International Journal of Pediatric Otorhinolaryngology 17, 19–29 (1989)

    Article  Google Scholar 

  16. Pinyerd, B.J.: Infant cries: physiology and assessment. Neonatal Network 13(4), 15–20 (1994)

    Google Scholar 

  17. Cano, S., et al.: The Spectral Analysis of Infant Cry: An Initial Approximation. In: Proceedings of EUROSPEECH 1995 (sponsored by ESCA & IEEE), Madrid, September 18-21 (1995)

    Google Scholar 

  18. Petroni, M., Malowany, A., Johnston, C., Stevens, B.: Identification of Pain from Infant Cry Vocalizations Using Artificial Neural Networks (ANNs). In: The International Infant Cry Research Group. Applications and Science of Artificial Neural Networks. The International Society for Optical Engineering, vol. 2492, pp. 729–738 (1995)

    Google Scholar 

  19. Schonweiler, R., et al.: Neural networks and self-organizing maps: new computer techniques in the acoustic evaluation of the infant cry. Int. Journal of Pediatric Otorhinolaryngology 38, 1–11 (1996)

    Article  Google Scholar 

  20. Suaste, I., Reyes-Galaviz, O., Dias, A., Reyes, C.: A Fuzzy Relational Neural Network for Pattern Classification. In: Sanfeliu, A., et al. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 358–365. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Alonso, L., et al.: Reconocimiento de Patrones con Redes Neuronales. In: Alonso, L. (ed.) Editorial Imprenta Catedral, pp. 37–56 (2001)

    Google Scholar 

  22. Orozco, J., Reyes, C.: Extracción y Análisis de Características Acústicas del Llanto de Bebés para su Reconocimiento Automático Basado en Redes Neuronales. Tesis de Maestría, INAOE, Puebla, Mex (2002)

    Google Scholar 

  23. Cano, D., et al.: Análisis preliminar de los resultados de una clasificación de unidades de llanto según tres arquitecturas de redes neuronales. In: Memorias de TELEC 2002 (en CD’Rom). Centro de Convenciones HEREDIA (Julio 2002)

    Google Scholar 

  24. Moller, S.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks 6(4), 525–533 (1993)

    Article  Google Scholar 

  25. Reyes, O.F., Cano, O.S.D., Reyes, C.A.: Validation of the Cry Unit As Primary Element for Cry Analysis Using An Evolutionary-Neural Approach. In: 9no Encuentro Internacional Mexicano de Ciencias de la Computacion ENC 2008, Universidad Autonoma de Baja California, Mexicali, Mexico (October 2008)

    Google Scholar 

  26. Diez, R.H., Torres, M., Escobedo, B.D.I., Cano, O.S.D., Regüeiferos, P.L., Capdevila, B.L.: Una Aproximación al Diagnostico Neonatal Basado en Analisis de Llanto con Clasificacion Supervisada. In: Proceedings of the VI SICS, Editorial Oriente. Santiago de Cuba, pp. 1404–1409 (1999)

    Google Scholar 

  27. Cano, O.S.D., Escobedo, D.I., Suaste, I., Ekkel, T., Reyes Garcia, C.A.: A Combined Classifier of Cry Units with New Acoustic Attributes. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 416–425. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Amaro-Camargo, E., Reyes-García, C.A., Arch-Tirado, E., Mandujano, M.: Statistical Vectors of Acoustic Features for the Automatic Classification of Infant Cry. The International Journal of Information Acquisition 4(4), 347–355 (2007)

    Article  Google Scholar 

  29. Santiago-Sánchez, K., García, C.A.R., Gómez-Gil, P.: Type-2 Fuzzy Sets Applied to Pattern Matching for the Classification of Cries of Infants under Neurological Risk. In: Huang, D.-S., et al. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 201–210. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Galaviz, O.F.R., Garcia, C.A.R.: Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition. In: Aguirre, A.H., Borja, R.M., Garcia, C.A.R. (eds.). LNCS (LNAI), vol. 5845, pp. 420–431. Springer, Heidelberg (2009)

    Google Scholar 

  31. Hirota, W.P.: Fuzzy Relational Compression. IEEE Transactions os Systems, man, and cybernetics, Part B: Cybernetics 29(3), 1–9 (1999)

    Google Scholar 

  32. Cano, S.D., Escobedo, D.I., Coello, E.: El Uso de los Mapas Auto-Organizados de Kohonen en la Clasificación de Unidades de Llanto Infantil. In: Grupo de Procesamiento de Voz, 1er Taller AIRENE, Universidad Catolica del Norte, Chile, pp. 24–29 (1999)

    Google Scholar 

  33. Ekkel, T.: Neural Network-Based Classification of Cries from Infants Suffering from Hypoxia-Related CNS Damage. Master Thesis. University of Twente, The Netherlands (2002)

    Google Scholar 

  34. Galaviz, O.F.R., García, C.A.R.: Infant Cry Classification to Identify Hypo Acoustics and Asphyxia comparing an Evolutionary-Neural System with a Neural Network System. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 949–958. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Reyes-García, C.A., Zatarain, R., Barron, L., Reyes-Galaviz, O.F.: A Hybrid System for Automatic Infant Cry Recognition I. In: Rabuñal, J.R., Dorado, J., Pazos, A. (eds.) Encyclopedia of Artificial Intelligence, Hershey, PA, USA. Information Science Reference (an imprint of IGI Global), pp. 860–866 (2008), ISBN 978-1-59904-849-9 (hardcover) – ISBN 978-1-59904-850-5 (ebook)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reyes-Garcia, C.A., Reyes-Galaviz, O.F., Cano-Ortiz, S.D., Escobedo-Becerro, D.I., Zatarain, R., Barrón-Estrada, L. (2010). Soft Computing Approaches to the Problem of Infant Cry Classification with Diagnostic Purposes. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics. Studies in Computational Intelligence, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15111-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15111-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15110-1

  • Online ISBN: 978-3-642-15111-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics