Skip to main content

Comparison of Fuzzy Edge Detectors Based on the Image Recognition Rate as Performance Index Calculated with Neural Networks

  • Chapter
Soft Computing for Recognition Based on Biometrics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 312))

  • 844 Accesses

Abstract

Edge detection is a process usually applied to image sets before the training phase in recognition systems. This preprocessing step helps to extract the most important shapes in an image, ignoring the homogeneous regions and remarking the real objective to classify or recognize. Many traditional and fuzzy edge detectors can be used, but it’s very difficult to demonstrate which one is better before the recognition results. In this work we present an experiment where several edge detectors were used to preprocess the same image sets. Each resultant image set was used as training data for neural network recognition system, and the recognition rates were compared. The goal of this experiment is to find the better edge detector that can be used as training data on a neural network for image recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Evans, A.N., Liu, X.U.: Morphological gradient approach for color edges detection. IEEE Transactions on Image Processing 15(6), 1454–1463 (2006)

    Article  Google Scholar 

  2. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  3. AT&T Laboratories Cambridge, The ORL database of faces, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  4. Russo, F., Ramponi, G.: Edge extraction by FIRE operators Fuzzy Systems. In: IEEE World Congress on Computational Intelligence, pp. 249–253 (1994)

    Google Scholar 

  5. Bustince, H., Berrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. In: Fuzzy Sets and Systems. Elsevier, Amsterdam (2008), www.sciencedirect.com

    Google Scholar 

  6. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, U.S.A. (2001)

    MATH  Google Scholar 

  7. Castro, J.R., Castillo, O., Melin, P., Rodriguez-Diaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science I. LNCS, vol. 4750, pp. 104–114. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Revathy, K., Lekshmi, S., Prabhakaran Nayar, S.R.: Fractal-Based Fuzzy Technique for Detection of Active Regions From Solar. Journal of Solar Physics 228, 43–53 (2005)

    Article  Google Scholar 

  9. Suzuki, K., Horiba, I., Sugie, N., Nanki, M.: Contour extraction of left ventricular cavity from digital subtraction angiograms using a neural edge detector. In: Systems and Computers Japan, pp. 55–69. Wiley, Japan (2003)

    Google Scholar 

  10. Lee, K.C., Ho, J., Kriegman, D.: Acquiring Linear Subspaces for Face Recognition under Variable Lighting. EEE Trans. Pattern Anal. Mach. Intelligence 27(5), 684–698 (2005)

    Article  Google Scholar 

  11. Hua, L., Cheng, H.D., Zhanga, M.: A High Performance Edge Detector Based on Fuzzy Inference Rules. Information Sciences: An International Journal 177(21), 4768–4784 (2007)

    Google Scholar 

  12. Heath, M., Sarkar, S., Sanocki, T., Bowyer, K.W.: A Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(12), 1338–1359 (1997)

    Article  Google Scholar 

  13. Mendoza, O., Melin, P.: The Fuzzy Sugeno Integral As A Decision Operator in The Recognition of Images with Modular Neural Networks. In: Hybrid Intelligent Systems, pp. 299–310. Springer, Germany (2007)

    Google Scholar 

  14. Mendoza, O., Melin, P., Licea, G.: A New Method for Edge Detection in Image Processing Using Interval Type-2 Fuzzy Logic. In: IEEE International Conference on Granular Computing (GRC 2007), Silicon Valley, Ca, U.S.A. (2007)

    Google Scholar 

  15. Mendoza, O., Melin, P., Licea, G.: A Hybrid Approach for Image Recognition Combining Type-2 Fuzzy Logic. In: Modular Neural Networks and the Sugeno Integral, Information Sciences, vol. 179(13), pp. 2078–2101. Elsevier, U.S.A. (2007)

    Google Scholar 

  16. Mendoza, O., Melin, P., Licea, G.: Fuzzy Inference Systems Type-1 And Type-2 for Digital Images Edges Detection, Engineering Letters. In: International Association of Engineers, E.U.A., vol. 15(1) (2007), http://www.engineeringletters.com/issues_v15/issue_1/EL_15_1_7.pdf

  17. Mendoza, O., Melin, P., Licea, G.: Interval Type-2 Fuzzy Logic for Module Relevance Estimation in Sugeno Integration of Modular Neural Networks. In: Soft Computing for Hybrid Intelligent Systems, pp. 115–127. Springer, Germany (2008)

    Chapter  Google Scholar 

  18. Mendoza, O., Melin, P., Licea, G.: A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. In: Information Sciences, vol. 179(3), pp. 2078–2101. Elsevier, Amsterdam (2008)

    Google Scholar 

  19. Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for edges detection in digital images. International Journal of Intelligent Systems 24(11), 1115–1134 (2009)

    Article  MATH  Google Scholar 

  20. Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Applied soft computing journal 9(4), 1377–1387 (2009)

    Article  Google Scholar 

  21. Mendoza, O., Melin, P., Castillo, O., Licea, G.: Type-2 Fuzzy Logic For Improving Training Data And Response Integration In Modular Neural Networks For Image Recognition. In: Foundations of Fuzzy Logic And Soft Computing (LNCC), pp. 604–612. Springer, Germany (2007)

    Chapter  Google Scholar 

  22. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  23. Yitzhaky, Y., Peli, E.: A Method for Objective Edge Detection Evaluation and Detector Parameter Selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1027–1033 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mendoza, O., Melin, P., Castillo, O., Castro, J.R. (2010). Comparison of Fuzzy Edge Detectors Based on the Image Recognition Rate as Performance Index Calculated with Neural Networks. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics. Studies in Computational Intelligence, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15111-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15111-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15110-1

  • Online ISBN: 978-3-642-15111-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics