Abstract
This paper presents three modular neural network architectures as systems for recognizing persons based on the iris biometric measurement of humans. In these systems, the human iris database is enhanced with image processing methods, and the coordinates of the center and radius of the iris are obtained to make a cut of the area of interest by removing the noise around the iris. The input to the modular neural networks are the processed iris images and the output is the number of the person identified. The integration of the modules was done with a gating network method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sánchez, O., González, J.: Access Control Based on Iris Recognition, Technological University Corporation of Bolívar, Faculty of Electrical Engineering, Electronics and Mechatronics, Cartagena of Indias, Monography, pp. 1–137 (November 2003)
López, J., González, J.: State of the Art: Automatic Recognition of Human Iris, Politécnico Colombiano, and National University of Colombia, Scientia et Technica Año XI, No 29, December de, pp. 77–81 (2005)
Database of Human Iris. Institute of Automation of Chinese Academy of Sciences (CASIA). Found on the Web page, http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp
Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Libro (1996)
Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., Nakajima, H.: An Effective Approach for Iris Recognition Using Phase-Based Image Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1741–1756 (2008)
MatLab, the language used for implementation and network design. Version 7.3.0.267 (R2006b), August 03 (2006)
Salinas, R.: Neural Network Architecture Parametric Face Recognition, Paper, University of Santiago of Chile, pp. 5–9 (2000), http://cabierta.uchile.cl/revista/17/articulos/paper4/index.html
Tisse, C., Martin, L., Torres, L., Robert, M.: Person identification technique using human iris recognition., Universite de Montepellier (2000)
Masek, L., Kovesi, P.: MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. The School of Computer Science and Software Engineering, The University of Western Australia (2003)
Daugman, J.: Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns. International Journal of Computer Vision 45(1), 25–38 (2001)
Khaw, P.: Iris recognition technology for improved authentication. Sala de Lectura de Seguridad de la Información, SANS Institute, pp. 1–17 (2002)
Muron, A., Pospisil, J.: The human iris structure and its usages, Czech Republic, Physica, pp. 89–95 (2000)
Ma, L., Wang y Tan, T.: Iris recognition based on multichannel Gabor filtering. In: ACCV2002. 5th Asian Conference on Computer Vision, Melbourne, Australia, Enero 23-25, vol. 1, pp. 279–283 (2002)
Moron, Q.: Modular Systems, Experts Mixed and Hybrid Systems., Technical Report DI-2000-001, Department of Computer University of Valladolid, Spain (2000)
Gómez, A.: A fast and robust approach for iris segmentation; Artículo, II Simposio Peruano de Computación Gráfica y Procesamiento de Imágenes, scgi-2008, pp. 1–10 (2008)
Daugman, J.: How Iris Recognition Works. IEEE Transactions on Circuits And Systems For Video Technology 14(1), 21–30 (2004)
Daugman, J., Downing, C.: Epigenetic Randomness, Complexity and Singularity of human Iris Patterns. The Royal Society Proceedings in Biological Sciences 268(1477), 1737–1740 (2001)
Kasar, A., Tapamo, J.R.: Texture Detection For Segmentation of Iris Images. In: ACM Proceedings of the 2005 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing countries, vol. 150, pp. 236–243 (2005)
Daugman, J.: The Importance of Being Random: Statistical Principles of Iris Recognition. The Journal of Pattern Recognition Society 36(2), 279–291 (2003)
He, Z., Tan, T., Sun, Z., Qiu, X.: Towards Accurate and Fast Iris Segmentation for Iris Biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence (July 15, 2008)
Tieniu, L., Wang, Y., Zhang, D.: Personal Identification Based on Iris Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)
Salazar, P.: Biometric recognition using techniques of hand geometry and voice with computer vision for feature extraction, neural networks and fuzzy logic, Master thesis, Division of Graduate Studies and Research in Computer Science, ITT, p. 57 (2008)
Wong, A., Shi, P.: Peg-Free Hand Geometry Recognition Using Hierarchical Geometry and Shape Matching. In: Artículo, Workshop on Machine Vision Applications (MAV), Nara, Japan (2002)
Morcego, B.: Study of modular neural networks for modeling nonlinear dynamic systems. PhD thesis, Universitat Politecnica de Catalunya, Barcelona, Spain (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gaxiola, F., Melin, P., López, M. (2010). Modular Neural Networks for Person Recognition Using the Contour Segmentation of the Human Iris Biometric Measurement. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics. Studies in Computational Intelligence, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15111-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-15111-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15110-1
Online ISBN: 978-3-642-15111-8
eBook Packages: EngineeringEngineering (R0)