
ByADL: an MDE framework for building
extensible Architecture Description Languages?

Davide Di Ruscio, Ivano Malavolta, Henry Muccini,
Patrizio Pelliccione, Alfonso Pierantonio

University of L’Aquila, Dipartimento di Informatica
{davide.diruscio,ivano.malavolta,henry.muccini,

patrizio.pelliccione,alfonso.pierantonio}@univaq.it

Abstract. In order to deal with evolving needs and stakeholder concerns, next
generation ADLs should support incremental extension and customization. In this
direction we proposed BYADL (Build Your ADL), a framework which allows
software architects to (i) extend existent ADLs with domain specificities, new
architectural views, or analysis aspects, (ii) integrate an ADL with development
processes and methodologies, and (iii) customize an ADL. This paper presents
the BYADL tool and its features.

1 Introduction

A broader view of Software Architecture (SA), which is being accepted today, is far be-
yond the traditional perception of an SA as a set of constituting elements (such as com-
ponents, connectors and interfaces) and looks at the multiple stakeholder’s concerns
and their design decisions [1–3]. Many Architecture Description Languages (ADLs)
have been proposed in the last years. Software engineers found existent ADLs inad-
equate for modelling concerns judged unavoidable by system’s stakeholders. Further-
more, stakeholders’s concerns vary from system to system and from domain to domain;
this demonstrates that it is not possible to define a general, optimal ADL once and for-
ever. Therefore, ADLs should be extensible in order to be able to adapt to different
stakeholder’s concerns and to different domain specificities. However, first attempts of
extensible ADLs do not deal with semantic aspects of extensions in a satisfactory way.

BYADL (Build Your ADL) [4] is a framework that supports a software architect
in defining its own ADL, which is optimal according to specific stakeholder’s con-
cerns, starting from an existent ADL. BYADL provides extensibility mechanisms for:
(i) adding domain specificities, new architectural views, or analysis aspects, (ii) inte-
grate ADLs with development processes and methodologies, (iii) customize ADLs by
fine tuning them. These mechanisms are implemented in the BYADL tool that is the
main objective of this paper. The tool supports different features such as model editing,
visualization with different views, extensibility, interoperability, and analysis. The tool
has been applied on a real system called Integrated Environment for Communication
on Ship (IECS); the case study comes from a project developed within Selex Commu-
nications, a company mainly operating in the naval communication domain.
? This work is partly supported by the Italian PRIN d-ASAP project.



Metamodels

repository

Composition

mechanisms

Visualization

and editor

creators

Migrators

Semantic links

definition

…

ByADL

a)

b) c)

d )e)

Fig. 1. The high-level design of the BYADL framework

The paper is organized as follows: Section 2 presents the main aspects of the BYADL
framework, Section 3 presents the tool, and finally Section 4 concludes the paper.

2 The ByADL framework

Figure 1 shows the high-level design of the BYADL framework. The main input of
BYADL is the metamodel of the ADL to be extended. For this reason BYADL contains
a repository of metamodels as shown in Figure 1.a. The metamodel is extended by
means of composition mechanisms (see Figure 1.b) that rely on specific composition
operators for metamodels.

It is important to note that, even though this could be technically possible, we do
not allow to compose two different ADLs since this could lead to the creation of a
“chaotic” and “vague” language. In such cases we believe that it is better to keep the
two ADLs separated, and to use interoperability techniques to translate from one ADL
to a different one [5]. The composition operators are: Match, Inherit, Reference, and
Expand, whose semantics is detailed in [4]. The composition engine performs also se-
mantic checks to avoid incidental errors. The Migrators (see Figure 1.c) component
is used to automatically generate model transformations able to reflect the architec-
tural models defined within the newly created ADL, back to the original tools. In the
BYADL framework, migrators are automatically generated by means of higher-order
model transformations. The ADL obtained at the end of the process is a modeling lan-
guage consisting of (i) an abstract syntax, i.e. the metamodel obtained by means of
the composition mechanisms, (ii) a set of concrete syntaxes, i.e., textual and graphical
notations to visualize and edit models conforming to the composed metamodel (see Fig-
ure 1.d), and (iii) semantics describing the meaning of the language constructs [6] (see
Figure 1.e). The semantics of the extended language is given by means of semantic re-
lationships between the language’s elements and elements of a target semantic domain
called A0 [5].

3 The ByADL tool

The BYADL tool1 is implemented as a plugin of the Eclipse2 platform. More specifi-
cally, it extends the ATLAS Model Management Architecture (AMMA)3. Metamodel
compositions are specified as weaving models defined by using the ATLAS Model

1 BYADL Web site: http://byadl.di.univaq.it/
2 Eclipse Project Home Page: http://www.eclipse.org
3 AMMA: http://wiki.eclipse.org/AMMA



Fig. 2. Metamodels composition user interface

Weaver (AMW). All the involved model transformations are based on the ATLAS
Transformation Language (ATL), a hybrid model transformation language with declar-
ative and imperative constructs. Models and metamodels are managed by means of
EMF4, a modeling framework for Eclipse. In the following we present how the features
of the BYADL framework described in Section 2 are realized in its supporting tool.

Metamodels import. Importing a metamodel into the Metamodels repository is a three-
steps process:
1. Obtaining a metamodel. The BYADL tool works on EMF metamodels. If the meta-
model of an architectural notation is not available, many techniques exist to obtain such
a metamodel, like using TCS5 in case of textual notations, or using the DUALLY im-
porting engine in case of UML-based notations.
2. Tagging a metamodel. Tagging metamodels guides ADLs extensions and keeps the
involved metamodels organized. The tags available in BYADL reflect the different kinds
of metamodel involved in the composition scenarios, namely: ADL, Domain, Analysis,
Viewpoint, Process, Methodology, Customization. The importing wizard al-
lows the user to associate one or more tags to the metamodel being imported.
3. Providing semantics to a metamodel. As stated in Section 2, in BYADL a kind of
translational semantics is provided to a metamodel by linking it to the A0 semantic do-
main. We extended the AMW interface so that the semantic links to the A0 metamodel
guide the application of the composition operators. More precisely, once applying an
operator, the BYADL tool highlights as target the metaclasses that are semantically
compatible with the source metaclass.

Metamodels composition. Software engineers create a new ADL by composing two
metamodels already imported into the Metamodel Repository. Metamodels are com-
posed by specifying weaving models which represent the application of the composition
operators. Figure 2 shows the AMW graphical interface we extended for metamodel
composition. The woven metamodels are rendered into two lateral panels (points a and
c in the figure) using the standard EMF tree-based interface. The central panel (point
b in the figure) represents the composition weaving model. Our extension consists of
a specific weaving metamodel defining the four kinds of composition operators and a

4 Eclipse Modeling Framework (EMF) project Web site: http://www.eclipse.org/emf
5 TCS: http://wiki.eclipse.org/TCS



dedicated weaving toolbar (see Figure 2.d). The composed metamodel is generated by
clicking on a button of the BYADL weaving toolbar; the result is a metamodel which is
automatically loaded into the Metamodels repository and tagged as ADL.
Model migrators generation. A model migrator is a specific ATL transformation; its
inner logic is represented by the operators applied in the weaving model during the com-
position phase. The BYADL weaving toolbar contains functionalities (see Figure 2.d)
to automatically generate the migrators starting from the current composition weaving
model. Model migrators may be used also outside the BYADL tool.
Editors generation. In BYADL there are three possibilities to produce an editor for the
ADL being developed: tree-based, textual, and graphical. Each editor has different lev-
els of usability and requires different efforts for the customization (if needed). The tree-
based editor, with its collapsible and hierarchical structure, is automatically provided
by EMF. The textual editor is automatically generated and conforms to the Human-
Usable Textual Notation (HUTN) specification6. The produced textual editor supports
syntax highlighting and automatic conformance check with respect to the metamodel of
the new ADL. The graphical editor is based on the EuGENia7 tool: exploiting specific
annotations of the metamodels involved in the composition (included A0), a graphical
editor is automatically generated. Obviously the generation of the editor is limited to
elements for which EuGENia annotations are provided. Special policies regulate the
choice of the graphical element to be used when more than one metamodel provide
EuGENia annotations for a specific concept.

4 Conclusions
In this paper we presented the BYADL tool. Starting from an existing ADL, BYADL
allows software architects to incrementally extend and customize an ADL according to
stakeholder’s concerns. BYADL ensures the compatibility with existing tools by means
of automatically generated migrators. Our tool also supports the generation of textual
and graphical editors for the newly created ADL. The generation of graphical editors is
in its prototypal version, this aspect is one of the main future work directions.

References

1. ISO: Fourth working draft of Systems and Software Engineering – Architectural Description
(ISO/IECWD4 42010). Working doc.: ISO/IEC JTC 1/SC 7 N 000, IEEE (2009)

2. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural knowledge.
Quality of Software Architectures (2006)

3. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons (2009)

4. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing next
generation adls through mde techniques. In: ICSE 2010, IEEE Computer Society (2010)

5. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.: Providing architectural languages and
tools interoperability through model transformation technologies. IEEE TSE 36(1) (2010)

6. Cuadrado, J.S., Molina, J.G.: A model-based approach to families of embedded domain spe-
cific languages. IEEE TSE 99(RapidPosts) (2009) 825–840

6 HUTN specification: http://www.omg.org/spec/HUTN/.
7 EuGENia: http://www.eclipse.org/gmt/epsilon/doc/eugenia/.


