Abstract
We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.
This research was supported by the European Union project COMBEST and the European Network of Excellence ArtistDesign.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)
Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic games with signals. In: Proc. of LICS, pp. 319–328. IEEE Computer Society, Los Alamitos (2009)
Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T.A., Raje, S.: Strategy construction for parity games with imperfect information. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 325–339. Springer, Heidelberg (2008)
Berwanger, D., Doyen, L.: On the power of imperfect information. In: Proc. of FSTTCS. Dagstuhl Seminar Proceedings 08004 (2008)
Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)
Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata on infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243. Springer, Heidelberg (2009)
Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In: Proc. of MFCS (2010)
Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of Partially-observable Markov decision processes. CoRR, abs/0909.1645 (2009)
Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: Proc. of SODA, pp. 114–123 (2004)
de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University. Technical Report STAN-CS-TR-98-1601 (1997)
de Alfaro, L.: The verification of probabilistic systems under memoryless partial-information policies is hard. In: Proc. of ProbMiV: Probabilistic Methods in Verification (1999)
De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168. Springer, Heidelberg (2006)
Gripon, V., Serre, O.: Qualitative concurrent stochastic games with imperfect information. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 200–211. Springer, Heidelberg (2009)
Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)
Littman, M.L.: Algorithms for sequential decision making. PhD thesis, Brown University (1996)
Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and related stochastic optimization problems. Artif. Intell. 147(1-2) (2003)
Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Mathematics of Operations Research 12, 441–450 (1987)
Paz, A.: Introduction to probabilistic automata. Academic Press, London (1971)
Reif, J.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29, 274–301 (1984)
Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT. Technical Report MIT/LCS/TR-676 (1995)
Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, Beyond Words, ch. 7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)
Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In: Proc. of FOCS, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatterjee, K., Doyen, L., Henzinger, T.A. (2010). Qualitative Analysis of Partially-Observable Markov Decision Processes. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-15155-2_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15154-5
Online ISBN: 978-3-642-15155-2
eBook Packages: Computer ScienceComputer Science (R0)