Skip to main content

Qualitative Analysis of Partially-Observable Markov Decision Processes

  • Conference paper
Mathematical Foundations of Computer Science 2010 (MFCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6281))

Abstract

We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.

This research was supported by the European Union project COMBEST and the European Network of Excellence ArtistDesign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic games with signals. In: Proc. of LICS, pp. 319–328. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  3. Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T.A., Raje, S.: Strategy construction for parity games with imperfect information. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 325–339. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Berwanger, D., Doyen, L.: On the power of imperfect information. In: Proc. of FSTTCS. Dagstuhl Seminar Proceedings 08004 (2008)

    Google Scholar 

  5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

    Google Scholar 

  6. Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata on infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In: Proc. of MFCS (2010)

    Google Scholar 

  8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)

    Google Scholar 

  9. Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of Partially-observable Markov decision processes. CoRR, abs/0909.1645 (2009)

    Google Scholar 

  10. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: Proc. of SODA, pp. 114–123 (2004)

    Google Scholar 

  11. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University. Technical Report STAN-CS-TR-98-1601 (1997)

    Google Scholar 

  12. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-information policies is hard. In: Proc. of ProbMiV: Probabilistic Methods in Verification (1999)

    Google Scholar 

  13. De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Gripon, V., Serre, O.: Qualitative concurrent stochastic games with imperfect information. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 200–211. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  16. Littman, M.L.: Algorithms for sequential decision making. PhD thesis, Brown University (1996)

    Google Scholar 

  17. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and related stochastic optimization problems. Artif. Intell. 147(1-2) (2003)

    Google Scholar 

  18. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Mathematics of Operations Research 12, 441–450 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Paz, A.: Introduction to probabilistic automata. Academic Press, London (1971)

    MATH  Google Scholar 

  20. Reif, J.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29, 274–301 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT. Technical Report MIT/LCS/TR-676 (1995)

    Google Scholar 

  22. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, Beyond Words, ch. 7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

  23. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In: Proc. of FOCS, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Doyen, L., Henzinger, T.A. (2010). Qualitative Analysis of Partially-Observable Markov Decision Processes. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15155-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15154-5

  • Online ISBN: 978-3-642-15155-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics