Abstract
We describe the medical image classification task in ImageCLEF 2005–2009. It evolved from a classification task with 57 classes on a total of 10,000 images into a hierarchical classification task with a very large number of potential classes. Here, we describe how the database and the objectives changed over the years and how state–of–the–art approaches from machine learning and computer vision were shown to outperform the nearest neighbor-based classification schemes working on full–image descriptors that were very successful in 2005. In particular the use of discriminative classification methods such as support vector machines and the use of local image descriptors were empirically shown to be important building blocks for medical image classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avni U, Goldberger J, Greenspan H (2008) TAU MIPLAB at ImageClef 2008. In: Working Notes of CLEF 2008, Aarhus, Denmark
Bo Q, Wei X, Qi T, Chang SX (2005) Report for annotation task in ImageCLEFmed 2005. In: Working Notes of CLEF 2005, Vienna, Austria
Boone J, Seshagiri S, Steiner R (1992) Recognition of chest radiograph orientation for picture archiving and comunication system display using neural networks. Journal of Digital Imaging 5(3):190–193
Deselaers T, Deserno TM (2009) Medical image annotation in ImageCLEF 2008. In: CLEF 2008 Proceedings. Lecture Notes in Computer Science (LNCS), vol 5706. Springer, pp 523–530
Deselaers T, Weyand T, Keysers D, Macherey W, Ney H (2005) FIRE in ImageCLEF 2005: Combining content–based image retrieval with textual information retrieval. In: CLEF 2005 Proceedings. Lecture Notes in Computer Science (LNCS), vol 4022. Springer, pp 652–661
Deselaers T, Weyand T, Ney H (2006) Image retrieval and annotation using maximum entropy. In: CLEF 2006 Proceedings. Lecture Notes in Computer Science (LNCS), vol 4730. Springer, pp 725–734
Deselaers T, Müller H, Clough P, Ney H, Lehmann TM (2007) The CLEF 2005 automatic medical image annotation task. International Journal of Computer Vision 74(1):51–58
Deselaers T, Deserno TM, Müller H (2008) Automatic medical image annotation in ImageCLEF 2007: Overview, results, and discussion. Pattern Recognition Letters 29(15):1988–1995
Gass T, Weyand T, Deselaers T, Ney H (2007) FIRE in ImageCLEF 2007: Support vector machines and logistic models to fuse image descriptors for photo retrieval. In: CLEF 2007 Proceedings. Lecture Notes in Computer Science (LNCS), vol 5152. Springer, pp 492–499
Güld MO, Deserno TM (2007) Baseline results for the ImageCLEF 2007 medical automatic annotation task using global image features. In: CLEF 2007 Proceedings. Lecture Notes in Computer Science (LNCS), vol 5152. Springer, pp 637–640
Güld MO, Kohnen M, Keysers D, Schubert H, Wein BB, Bredno J, Lehmann TM (2002) Quality of DICOM header information for image categorization. In: Proceedings SPIE, vol 4685, pp 280–287
Güld MO, Christian Thies BF, Lehmann TM (2005) Combining global features for content–based retrieval of medical images. In: Working Notes of CLEF 2005, Vienna, Austria
Keysers D, Dahmen J, Ney H (2003) Statistical framework for model–based image retrieval in medical applications. Journal of Electronic Imaging 12(1):59–68
Lehmann TM, Güld O, Keysers D, Schubert H, Kohnen M, Wein BB (2003a) Determining the view position of chest radiographs. Journal of Digital Imaging 16(3):280–291
Lehmann TM, Schubert H, Keysers D, Kohnen M, Wein BB (2003b) The IRMA code for unique classification of medical images. In: Proceedings SPIE, vol 5033, pp 440–451
Lehmann TM, Güld MO, Deselaers T, Keysers D, Schubert H, Spitzer K, Ney H, Wein B (2005) Automatic categorization of medical images for content–based retrieval and data mining. Computerized Medical Imaging and Graphics 29(2):143–155
Liu J, Hu Y, Li M, Ma S, ying Ma W (2006) Medical image annotation and retrieval using visual features. In: CLEF 2006 Proceedings. Lecture Notes in Computer Science (LNCS), vol 4730. Springer, pp 678–685
Lowe DG (1999) Object recognition from local scale–invariant features. In: Proceedings of the international conference on computer vision, vol 2, p 1150
Marée R, Geurts P, Piater J, Wehenkel L (2005) Biomedical image classification with random subwindows and decision trees. In: Proceedings of the international conference on computer vision, workshop on Computer Vision for Biomedical Image Applications. Lecture Notes in Computer Science (LNCS), vol 3765. Springer, pp 220–229
Müller H, Geissbühler A, Marty J, Lovis C, Ruch P (2005) The Use of MedGIFT and EasyIR for ImageCLEF 2005. In: CLEF 2005 Proceedings. Lecture Notes in Computer Science (LNCS), vol 4022. Springer, pp 724–732
Müller H, Deselaers T, Deserno T, Kim E, Hersh W (2006) Overview of the ImageCLEFmed 2006 medical retrieval and annotation tasks. In: CLEF 2006 Proceedings. Lecture Notes in Computer Science (LNCS), vol 4730. Springer, pp 595–608
Nilsback M, Caputo B (2004) Cue integration through discriminative accumulation. In: Proceedings of the international conference on computer vision and pattern recognition, vol 2, pp 578–585
Pietka E, Huang H (1992) Orientation correction of chest images. Journal of Digital Imaging 5(3):185–189
Pinhas A, Greenspan H (2003) A continuous and probabilistic framework for medical image representation and categorization. In: Proceedings SPIE, vol 5371, pp 230–238
Rahman MM, Sood V, Desai BC, Bhattacharya P (2006) CINDI at ImageCLEF 2006: Image retrieval and annotation tasks for the general photographic and medical image collections. In: CLEF 2006 Proceedings. Lecture Notes in Computer Science (LNCS), vol 4730. Springer, pp 715–724
Setia L, Teynor A, Halawani A, Burkhardt H (2008) Grayscale medical image annotation using local relational features. Pattern Recognition Letters 29(15):2039–2045
Springmann M, Schuldt H (2007) Speeding up IDM without degradation of retrieval quality. In: Working Notes of CLEF 2007, Budapest, Hungary
Tommasi T, Orabona F, Caputo B (2007a) CLEF2007 Image Annotation Task: an SVM–based Cue Integration Approach. In: Working Notes of CLEF 2007, Budapest, Hungary
Tommasi T, Orabona F, Caputo B (2008b) CLEF2008 Image Annotation Task: an SVM Confidence–Based Approach. In: Working Notes of CLEF 2008, Aarhus, Denmark
Tommasi T, Orabona F, Caputo B (2008) Discriminative cue integration for medical image annotation. Pattern Recognition Letters 29(15):1996–2002
Tommasi T, Caputo B, Welter P, Güld MO, Deserno TM (2009) Overview of the CLEF 2009 medical image annotation track. In: Working Notes of CLEF 2009, Corfu, Greece
Unay D, Soldea O, Ozogur-Akyuz S, Cetin M, Ercil A (2009) Medical image retrieval and automatic annotation: VPA–SABANCI at ImageCLEF 2009. In: Working Notes of CLEF 2009, Corfu, Greece
Zhou X, Gobeill J, Müller H (2008) MedGIFT at ImageCLEF 2008. In: Working Notes of CLEF 2008, Aarhus, Denmark
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Tommasi, T., Deselaers, T. (2010). The Medical Image Classification Task. In: Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds) ImageCLEF. The Information Retrieval Series, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15181-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-15181-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15180-4
Online ISBN: 978-3-642-15181-1
eBook Packages: Computer ScienceComputer Science (R0)