Skip to main content

From Mirror Writing to Mirror Neurons

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

The article offers a personal perspective on Simulation of Animal Behavior, starting with the inspiration of Norbert Wiener’s 1948 Cybernetics for the publication of Brains, Machines, and Mathematics in 1964. This led to a range of simulations of the brains and behaviors of frogs (Rana computatrix), rats, monkeys and humans. Such work is paralleled by work in biologicallyinspired robots, traceable back to Grey Walter’s Machina speculatrix of 1953. Recent work includes detailed modeling of hand control, mirror neurons and sequencing as part of a program to determine ”What the Macaque Brain Tells the Human Mind”. The Mirror System Hypothesis for the evolution of the language- ready brain suggests a path for evolution of brain mechanisms atop the mirror system for grasping, with new processes supporting simple imitation, complex imitation, gesture, pantomime and finally protosign and protospeech. It is argued that this progression suggests the ”dead end of the simple model” if we are to fully explore the lessons of Simulation of Animal Behavior for computational neuroscience and biologically-inspired robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine. The Technology Press and John Wiley & Sons, New York (1948)

    Google Scholar 

  2. McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  3. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society, vol. 2(42), pp. 230–265 (1936)

    Google Scholar 

  4. Arbib, M.A.: Turing Machines, Finite Automata, and Neural Nets. J. Assoc. Computing Machinery 8, 467–475 (1961)

    MATH  MathSciNet  Google Scholar 

  5. Lettvin, J.Y., et al.: What the frog’s eye tells the frog brain. Proceedings of the IRE 47, 1940–1951 (1959)

    Article  Google Scholar 

  6. Pitts, W.H., McCulloch, W.S.: How we know universals, the perception of auditory and visual forms. Bulletin of Mathematical Biophysics 9, 127–147 (1947)

    Article  Google Scholar 

  7. Arbib, M.A.: Brains, Machines and Mathematics. McGraw-Hill, New York (1964)

    Google Scholar 

  8. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160, 106–154 (1962)

    Google Scholar 

  9. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  10. Hebb, D.O.: The Organization of Behavior. John Wiley & Sons, New York (1949)

    Google Scholar 

  11. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 43–98. Princeton University Press, Princeton (1956)

    Google Scholar 

  12. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  13. Greene, P.H.: On looking for neural networks and “cell assemblies” that underlie behavior: I. A mathematical model. Bulletin of Mathematical Biology 24, 247–275 (1962)

    Google Scholar 

  14. Miller, G.A., Galanter, E., Pribram, K.H.: Plans and the Structure of Behavior. Holt, Rinehart & Winston (1960)

    Google Scholar 

  15. Samuel, A.L.: Some Studies in Machine Learning Using the Game of Checkers. IBM. J. Res. and Dev. 3, 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  16. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38 (1931)

    Google Scholar 

  17. Rall, W.: Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss, R. (ed.) Neural Theory and Modelling, pp. 73–97. Stanford University Press, Stanford (1964)

    Google Scholar 

  18. Ingle, D.J.: Visual releasers of prey catching behaviour in frogs and toads. Brain, Behav., Evol. 1, 500–518 (1968)

    Article  Google Scholar 

  19. Didday, R.L.: The Simulation and Modelling of Distributed Information Processing in the Frog Visual System. Stanford University, Stanford (1970)

    Google Scholar 

  20. Lara, R., Arbib, M.A.: A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biol. Cybern. 51, 223–237 (1985)

    Article  Google Scholar 

  21. House, D.H.: Depth Perception in Frogs and Toads: A Study in Neural Computing. Lecture Notes in Biomathematics, vol. 80. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  22. Wang, D., Arbib, M.A.: Modeling the dishabituation hierarchy: the role of the primordial hippocampus. Biol. Cybern. 67, 535–544 (1992)

    Article  MATH  Google Scholar 

  23. Corbacho, F., et al.: Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture. Biol. Cybern. 93, 391–409 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Arkin, R.C.: Neuroscience in motion: the application of schema theory to mobile robotics. In: Ewert, J.-P., Arbib, M.A. (eds.) Visuomotor Coordination: Amphibians, Comparisons, Models, and Robots, pp. 649–671. Plenum Press, New York (1989)

    Google Scholar 

  25. Arbib, M.A., Hesse, M.B.: The Construction of Reality. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  26. Draper, B.A., et al.: The schema system. International Journal of Computer Vision 2, 209–250 (1989)

    Article  Google Scholar 

  27. Arbib, M.A.: The Metaphorical Brain: An Introduction to Cybernetics as Artificial Intelligence and Brain Theory. Wiley-Interscience, New York (1972)

    MATH  Google Scholar 

  28. Walter, W.G.: The Living Brain. Duckworth, London (1953)

    Google Scholar 

  29. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. Bradford Books/The MIT Press (1984)

    Google Scholar 

  30. Dev, P.: Perception of Depth Surfaces in Random-dot Stereograms: A Neural Model. Int. J. Man-Machine Studies 7, 511–528 (1975)

    Article  MATH  Google Scholar 

  31. Boylls, C.C.: Synergies and cerebellar function. In: Szentágothai, J., Arbib, M.A. (eds.) Conceptual Models of Neural Organization, pp. 157–165. The MIT Press, Cambridge (1975)

    Google Scholar 

  32. Lieblich, I., Arbib, M.A.: Multiple Representations of Space Underlying Behavior. The Behavioral and Brain Sciences 5, 627–659 (1982)

    Article  Google Scholar 

  33. Guazzelli, A., et al.: Affordances, Motivation, and the World Graph Theory. Adaptive Behavior 6, 435–471 (1998)

    Article  Google Scholar 

  34. Jeannerod, M., Biguer, B.: Visuomotor mechanisms in reaching within extra-personal space. In: Ingle, D.J., Mansfield, R.J.W., Goodale, M.A. (eds.) Advances in the Analysis of Visual Behavior, pp. 387–409. The MIT Press, Cambridge (1982)

    Google Scholar 

  35. Arbib, M.A.: Perceptual structures and distributed motor control. In: Brooks, V.B. (ed.) Handbook of Physiol-ogy — The Nervous System II. Motor Control, pp. 1449–1480. American Physiological Society, Bethesda (1981)

    Google Scholar 

  36. Iberall, T., Bingham, G., Arbib, M.A.: Opposition Space as a Structuring Concept for the Analysis of Skilled Hand Movements. In: Heuer, H., Fromm, C. (eds.) Generation and Modulation of Action Patterns, pp. 158–173. Springer, Heidelberg (1986)

    Google Scholar 

  37. Arbib, M.A., Iberall, T., Lyons, D.: Coordinated control programs for control of the hands. In: Goodwin, A.W., Darian-Smith, I. (eds.) Hand Function and the Neocortex, pp. 111–129. Springer, Berlin (1985)

    Google Scholar 

  38. Arbib, M.A., Caplan, D.: Neurolinguistics must be Computational. Behavioral and Brain Sciences 2, 449–483 (1979)

    Google Scholar 

  39. Arbib, M.A., Conklin, E.J., Hill, J.C.: From Schema Theory to Language. Oxford University Press, New York (1987)

    Google Scholar 

  40. Hoff, B., Arbib, M.A.: Models of Trajectory Formation and Temporal Interaction of Reach and Grasp. J. Mot. Behav. 25, 175–192 (1993)

    Article  Google Scholar 

  41. Fagg, A., Arbib, M.: Modeling parietal-premotor interactions in primate control of grasping. Neural Netw. 11, 1277–1303 (1998)

    Article  Google Scholar 

  42. Rizzolatti, G., et al.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

    Article  Google Scholar 

  43. Oztop, E., Arbib, M.A.: Schema design and implementation of the grasp-related mirror neuron system. Biol. Cybern. 87, 116–140 (2002)

    Article  MATH  Google Scholar 

  44. Arbib, M.A., Bota, M.: Language Evolution: Neural Homologies and Neuroinformatics. Neural Networks 16, 1237–1260 (2003)

    Article  Google Scholar 

  45. Arbib, M.A., Fagg, A.H., Grafton, S.T.: Synthetic PET Imaging for Grasping: From Primate Neurophysiology to Human Behavior. In: Sommer, F.T., Wichert, A. (eds.) Exploratory Analysis and Data Modeling in Functional Neuroimaging, pp. 232–250. The MIT Press, Cambridge (2003)

    Google Scholar 

  46. Arbib, M.A., et al.: Synthetic PET: analyzing large-scale properties of neural networks. Human Brain Mapping 2, 225–233 (1995)

    Article  Google Scholar 

  47. Fagg, A.H., Arbib, M.A.: Modeling parietal-premotor interactions in primate control of grasping. Neural Netw. 11, 1277–1303 (1998)

    Article  Google Scholar 

  48. Gallese, V., et al.: Action recognition in the premotor cortex. Brain 119, 593–609 (1996)

    Article  Google Scholar 

  49. Bonaiuto, J., Rosta, E., Arbib, M.A.: Extending the mirror neuron system model, I: Audible actions and invisible grasps. Biol. Cybern. 96, 9–38 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Arbib, M.A., et al.: Tool use and the distalization of the end-effector. Psychol. Res. 73, 441–462 (2009)

    Article  Google Scholar 

  51. Houghton, G., Hartley, T.: Parallel Models of Serial Behavior: Lashley Revisited. Psyche. 2 (1995)

    Google Scholar 

  52. Rhodes, B.J., et al.: Learning and production of movement sequences: behavioral, neuro-physiological, and modeling perspectives. Hum. Mov. Sci. 23, 699–746 (2004)

    Article  Google Scholar 

  53. Bonaiuto, J., Arbib, M.A.: Extending the mirror neuron system model, II: What did I just do? A new role for mirror neurons. Biological Cybernetics 102, 341–359 (2010)

    Article  MathSciNet  Google Scholar 

  54. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  55. Grafton, S.T., et al.: Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp. Brain Res. 112, 103–111 (1996)

    Article  Google Scholar 

  56. Emmorey, K.: Language, Cognition, and the Brain: Insights from Sign Language Research. Lawrence Erlbaum and Associates, Mahwah (2002)

    Google Scholar 

  57. Rizzolatti, G., Arbib, M.A.: Language within our grasp. Trends Neurosci. 21, 188–194 (1998)

    Article  Google Scholar 

  58. Myowa-Yamakoshi, M., Matsuzawa, T.: Factors influencing imitation of manipulatory actions in chimpanzees (Pan troglodytes). J. Comp. Psychol. 113, 128–136 (1999)

    Article  Google Scholar 

  59. Arbib, M.A.: From Monkey-like Action Recognition to Human Language: An Evolutionary Framework for Neurolinguistics (with commentaries and author’s response). Behavioral and Brain Sciences 28, 105–167 (2005)

    Google Scholar 

  60. Arbib, M.A.: Aphasia, apraxia and the evolution of the language-ready brain. Aphasiology 20, 1–30 (2006)

    Article  Google Scholar 

  61. Hickok, G., Poeppel, D.: Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004)

    Article  Google Scholar 

  62. Croft, W., Cruse, D.A.: Cognitive Linguistics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  63. Kemmerer, D.: Action verbs, argument structure constructions, and the mirror neuron system. In: Arbib, M.A. (ed.) Action to Language via the Mirror Neuron System, pp. 347–373. Cambridge University Press, Cambridge (2006)

    Chapter  Google Scholar 

  64. Itti, L., Arbib, M.A.: Attention and the minimal subscene. In: Arbib, M.A. (ed.) Action to Language via the Mirror Neuron System, pp. 289–346. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  65. Arbib, M.A., Lee, J.: Describing visual scenes: Towards a neurolinguistics based on construction grammar. Brain Research 1225, 146–162 (2008)

    Article  Google Scholar 

  66. Arbib, M.A., Lee, J.: Vision and Action in the Language-Ready Brain: From Mirror Neurons to SemRep. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds.) BVAI 2007. LNCS, vol. 4729, pp. 104–123. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  67. De Beule, J., Steels, L.: Hierarchy in Fluid Construction Grammar. In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 1–15. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  68. Bergen, B.K., Chang, N.: Embodied Construction Grammar in Simulation-Based Language Understanding. In: Östman, J.-O., Fried, M. (eds.) Construction grammar(s): Cognitive and Cross-Language Dimensions, pp. 147–190. John Benjamins, Amsterdam (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbib, M.A. (2010). From Mirror Writing to Mirror Neurons. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics