Abstract
The Dempster-Shafer theory of belief functions provides a unified framework for handling both aleatory uncertainty, arising from statistical variability in populations, and epistemic uncertainty, arising from incompleteness of knowledge. An overview of both the fundamentals and some recent developments in this theory will first be presented. Several applications in data analysis and machine learning will then be reviewed, including learning under partial supervision, multi-label classification, ensemble clustering and the treatment of pairwise comparisons in sensory or preference analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Denoeux, T. (2010). Theory of Belief Functions for Data Analysis and Machine Learning Applications: Review and Prospects. In: Bi, Y., Williams, MA. (eds) Knowledge Science, Engineering and Management. KSEM 2010. Lecture Notes in Computer Science(), vol 6291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15280-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-15280-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15279-5
Online ISBN: 978-3-642-15280-1
eBook Packages: Computer ScienceComputer Science (R0)